University A. Elhafidh Boussouf Mila Institute of Science and Technology Department of Process Engineering

Serie No. 5

Exercice 1

Give the name of the following complex.

$$\label{eq:constraint} \begin{split} &[Ni(CO)_4], \ &[Co(H_2O)_6]^{2+}, \ &[Al(H_2O)_6]^{3+}, \ &[Fe(CN)_6]^{4-}, \ &[Cu(NH_3)_4]^{2+}, \ &[Zn(H_2O)_6]^{2+}, \\ &[CoCl(NH_3)_5]^{2+}, \ &[CrCl_2(H_2O)_4]^+ \end{split}$$

Exercice 2

Give the name of the following complex containing polydentate anionic ligands $[Co(S_2O_3)_3]^{3-}$, $[Fe(C_2O_4)_3]^{3-}$, $[Cr(C_2O_4)_2(NH_3)_2]^{-}$,

Exercice 3

Give the structure of the following complex Diaqua(bis(ethylenediamine))nickel(II)ion, Dichloro(bis(ethylenediamine))cobalt(III) ion, Dinitrato(bis(ethylenediamine))iron(II), Diaqua(bis(ethylenediamine))chromium(III) ion, Diaqua(bis(ethylenediamine))manganese(II) ion

Exercice 4

Consider the following species: $[Co(NH_3)_6]^{3+}$, $[Cu(NH_3)_4]^{2+}$, $[Ag(CN)_2]^-$, $[Fe(CN)_6]^{3-}$, Co^{3+} , Cu^{2+} , Fe^{3+} , Co^{3+} , Cu^+ , Co^{2+} , Ag^+

- 1) Form all possible donor-acceptor ligand pairs for the given species.
- 2) Provide the expression for the global formation constant K_f for each of the complexes.

Exercice 5

A solution contains 0.01 M of Cu^{2+} ions and an excess of NH₃. The following stepwise formation constants are given for the reaction of Cu^{2+} with NH₃: $K_1 = 10^4$, $K_2 = 10^3$, $K_3 = 10^2$

- 1) Give the stepwise reactions for the complexation of Cu^{2+} with NH₃.
- 2) Write the overall formation constant (β_3) for the triammonia complex [Cu(NH₃)₃]²⁺.
- If the concentration of free NH₃ is 0.1 M, calculate the equilibrium concentration of [Cu(NH₃)₃]²⁺ in the solution.