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Teaching objectives Teaching objectives Introduce the student to the phenomena

of mechanical vibrations restricted to low amplitude oscillations for 1 or 2 degrees of

freedom as well as to the study of the propagation of mechanical waves. Recommended

prior knowledge : 1st year Mathematics and Physics concepts

i



Contents

1 Vibrations 1

1.1 GENERALITIES “Introduction to Lagrange’s equations . . . . . . . 1

1.1.1 General information on vibrations . . . . . . . . . . . . . . . . 1

1.1.2 Concept of energy . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Lagrange Formalism . . . . . . . . . . . . . . . . . . . . . . . 14

2 Linear systems with a single degree of freedom 17

2.1 Introduction : Study of undamped free oscillations . . . . . . . . . . . 17

2.1.1 Complex representation and Definition of Fourier series . . . . 17

2.1.2 Study of the mechanical system . . . . . . . . . . . . . . . . . 18

2.1.3 Solution of the Differential Equation . . . . . . . . . . . . . . 21

2.1.4 Electro-mechanical Analogy . . . . . . . . . . . . . . . . . . . 24

3 Single degree of freedom damped free linear systems 25

3.1 Introduction to Damped Free Oscillation Types of Friction . . . . . . 25

3.2 Types of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ii



3.2.1 Solid Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Fluid or Viscous Friction . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Friction in Highly Viscous Media . . . . . . . . . . . . . . . . 26

3.2.4 Other Complex Types of Friction . . . . . . . . . . . . . . . 27

3.3 Lagrange’s equation in a damped system . . . . . . . . . . . . . . . . 28

3.4 Mass-Spring-Damper System Differential Equation . . . . . . . . . . 29

3.4.1 The equation of motion . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Solution of the Equation of Motion . . . . . . . . . . . . . . . 31

3.4.3 The logarithmic decrement . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Total Energy of a Damped Harmonic Oscillator . . . . . . . . 40

3.4.5 The quality factor . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.6 Electric Harmonic Oscillator . . . . . . . . . . . . . . . . . . 42

4 Forced linear system with one degree of freedom 45

4.1 Definition of Forced Oscillation . . . . . . . . . . . . . . . . . . . . . 46

4.2 Lagrange’s Equation for Forced Systems . . . . . . . . . . . . . . . . 46

4.2.1 Example: Mass-Spring-Damper System . . . . . . . . . . . . 46

4.3 Solution to the Differential Equation . . . . . . . . . . . . . . . . . . 48

4.3.1 Transient Response . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Steady-State Response . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Study of the Steady-State Regime . . . . . . . . . . . . . . . . . . . 52

iii



4.4.1 Study of the Steady-State Response . . . . . . . . . . . . . . 53

4.4.2 Resonance Phenomenon . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Coupled Oscillators 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Example of Coupled Free Oscillators . . . . . . . . . . . . . . . . . . 65

5.2.1 Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Two Degrees of Freedom System . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Example: Mass-Spring System . . . . . . . . . . . . . . . . . . 70

5.4 Deriving the Equations of Motion using the Lagrange Method . . . . 74

5.5 Finding the Natural Frequencies Using the Matrix Method . . . . . . 75

5.6 Finding the Eigenmodes x1 and x2 . . . . . . . . . . . . . . . . . . . 78

5.7 Finding the Natural Frequencies and eigenmodes Using the Method of

Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7.1 Finding the Natural Frequencies of Eigenmodes . . . . . . . . 84

5.7.2 Superposition of Vibrations with Different Frequencies . . . . 86

5.8 Forced Oscillations with Degrees of Freedom . . . . . . . . . . . . . . 90

5.8.1 Forced Oscillations without Damping . . . . . . . . . . . . . . 90

iv



6 Lorem Ipsum Dolor Sit Amet 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Lorem Ipsum Dolor Sit Amet . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Measurement 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Metric A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Proposed Work and Timeline 102

8.1 Lorem Ipsum Dolor Sit Amet . . . . . . . . . . . . . . . . . . . . . . 102

8.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1.2 Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Expected Contributions 103

v



List of Figures

1.1 Movement of revolution of the moon . . . . . . . . . . . . . . . . . . 2

1.2 Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Representation of a harmonic oscillation . . . . . . . . . . . . . . . . 5

1.4 Representation of an anharmonic oscillation . . . . . . . . . . . . . . 6

1.5 Double pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 the variation of energies as a function of displacement . . . . . . . . . 13

1.7 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Sinusoidal motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Solid Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Viscous Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Represent of damper . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Mass-spring-damper system In balance and in motion . . . . . . . . . 30

3.5 The aperiodic regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Critical aperiodic regime . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



3.7 Oscillations (pseudo-period) . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Electric harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Transitional regime and permanent regime . . . . . . . . . . . . . . . 57

4.3 Variation of the amplitude a as a function of . . . . . . . . . . . . . . 61

4.4 Phase variation as a function of . . . . . . . . . . . . . . . . . . . . . 62

4.5 The resonance and the quality diminish . . . . . . . . . . . . . . . . . 63

5.1 Free mechanical oscillators coupled by elasticity. . . . . . . . . . . . . 66

5.2 Free mechanical oscillators coupled by inertia . . . . . . . . . . . . . 67

5.3 Viscous Coupling in Mechanical Oscillators . . . . . . . . . . . . . . . 67

5.4 Inertial Coupling in Electrical Oscillators . . . . . . . . . . . . . . . . 68

5.5 Viscous Coupling in Electrical Oscillators . . . . . . . . . . . . . . . . 69

5.6 Mass-springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Representation of vibratory movement . . . . . . . . . . . . . . . . . 89

5.8 Representation of vibratory movement . . . . . . . . . . . . . . . . . 89

5.9 Beating of the two oscillations x3(t) and x4(t) . . . . . . . . . . . . . 90

5.10 Elastically coupled mechanical oscillators are subjected to an external

force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 Variation of Amplitudes A1 and A2 as a Function of the Pulse . . . . 94

5.12 Mechanical oscillators by elasticity and subjected to an external force

and a damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



List of Tables

2.1 Electromechanical Analogy (Free Motion) . . . . . . . . . . . . . . . 24

3.1 Analogy between mechanical and eclectic oscillations . . . . . . . . . 44

viii



Chapter 1

Vibrations

1.1 GENERALITIES “Introduction to Lagrange’s

equations

1.1.1 General information on vibrations

Definition of a periodic movement

A movement is said to be periodic if it repeats identically to itself during equal inter-

vals of time.

Examples: The movement of revolution of the Moon: The moon makes

a complete cycle of revolution around the earth in approximately 29 days.

Heartbeats: the heartbeat is a succession of contractions and relax-

ations of the cardiac muscles that activate valves and cause the circulation

of blood in the body.
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Figure 1.1: Movement of revolution of the moon

Figure 1.2: Electrocardiogram

Definition of an oscillation

Oscillation: any movement of a body that moves alternately from one side to the other

from an equilibrium position. Oscillation refers to any repetitive motion around an

equilibrium point. It can occur in mechanical systems (like a pendulum) or in other

systems, such as electrical circuits (AC current) or biological rhythms. - Type of

Motion: Oscillations typically describe smooth, periodic motions where the system

swings back and forth in a regular pattern. - Examples: - A pendulum swinging back

and forth. - The oscillation of an electrical signal in an alternating current (AC). -

Seasonal cycles in nature or heartbeats in biology. - Broader Context : Oscillation

can occur in “physical, chemical, electrical, or biological systems”. It may or may

not involve physical movement; for example, **light waves** oscillate but do not

”vibrate” in the mechanical sense.
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Subdivided of Oscillations:

Free oscillations an oscillator is free if it oscillates without external interventions

(without friction) during its return to equilibrium -Damped oscillations the oscilla-

tor is subjected to friction forces that dissipate energy the oscillation damps and

eventually stops. -Forced oscillations an oscillator is forced if an external action

communicates energy to it. -Damped forced oscillations the external periodic force

(excitation) compensates for the losses of snow removal by friction, the oscillations

thus maintained do not dampen.

Definition of vibration:

Definition: Vibration specifically refers to the rapid, mechanical oscillations of a

material or object. It involves the back-and-forth movement of particles or structures,

often in response to an external force. - Type of Motion: Vibration is generally

associated with fast, small-amplitude movements around an equilibrium position,

often creating sound or heat as energy dissipates. - Examples: - The vibration of a

guitar string when plucked. - The shaking of a mobile phone during a notification.

- The vibrating motion of an engine or machinery. - Mechanical Nature: Vibration

typically involves **mechanical systems** and is usually associated with physical

objects. It is a subset of oscillation, specifically relating to mechanical systems.

Key differences:

1. Scope:

- Oscillation is a more general term and can apply to any repetitive motion

(mechanical, electrical, biological, etc.).

- Vibration specifically refers to mechanical oscillations of a structure or object.

2. Speed and Amplitude:

- Vibration is often faster and involves smaller movements, whereas oscillation

can be slower and cover a larger range of motion.
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3. Systems:

- Oscillation applies to systems as varied as electrical circuits and mechanical

objects.

- Vibration is usually limited to mechanical or physical systems.

- Oscillation is a general concept of periodic motion, applicable to various sys-

tems.

- Vibration is a specific type of oscillation that refers to the mechanical move-

ment of objects.

Definition of a periodic motion

Periodic motion is a type of motion that repeats itself at regular intervals of time.

In other words, an object in periodic motion returns to the same position and state

after a fixed time period, known as the period. - Examples: The swinging of a pen-

dulum, the vibration of a guitar string, the orbit of planets around the sun, and the

oscillations of a mass on a spring.

Mathematical Form:

- Periodic motion is often described mathematically by sine or cosine functions, which

reflect the repetitive nature of the movement. For fast motions we use the frequency

(ƒ ) expressed in hertz (HZ) it is related to the period by:

f =
1

T
(1.1)

The number of revolutions per second is called pulsation ω (noted , measured in

rad/s)

ω = 2πf =
2π

T
(1.2)

1Hz = 1 period per second

1KHz = 103Hz
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1MHz = 106Hz

1GHz = 109Hz

Note:

1. An oscillator is said to be harmonic if the system evolves according to a periodic

law of sinusoidal form (Figure 1-3).

x(t) = A cos(t+ φ) (1.3)

Figure 1.3: Representation of a harmonic oscillation

A: Amplitude of the oscillation (Maximum value of the displacement)

ω : Pulsation of the oscillation

φ : the initial phase (t = 0)

Speed: v The speed of the oscillating point M is the derivative of its displacement.

2- The oscillator is said to be non-harmonic if the system evolves according to a

periodic law of any non-sinusoidal form figure 1.4.
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Figure 1.4: Representation of an anharmonic oscillation

1.1.2 Concept of energy

Key Concepts of Energy in Vibration and Oscillation: ] The concept of energy

in vibration and oscillation involves the continuous exchange between two primary

forms of mechanical energy: kinetic energy (KE) and potential energy (PE). In sys-

tems undergoing vibration or oscillation, energy moves back and forth between these

two forms as the object or system moves through its cycle.

Key Concepts of Energy in Vibration and Oscillation:

Total Mechanical Energy:

The total mechanical energy in a vibrating or oscillating system remains constant

(assuming no energy loss due to friction or damping). This energy is the sum of

kinetic and potential energy at any given point in the motion.

ETot = KE + PE = Const (1.4)

Kinetic Energy (KE):

Kinetic energy is the energy of motion. It is at its maximum when the object moves

the fastest, which typically occurs when the object passes through its equilibrium

6



position (the center of its motion).

Formula for kinetic energy:

KE =
1

2
mv2 (1.5)

v =
∂x

∂t
= ẋ (1.6)

⇒ KE =
1

2
mẋ2 (1.7)

Where m is the mass of the object and v is its velocity.

- In an oscillating system, kinetic energy is highest when the velocity is greatest and

zero at the turning points of motion.

Potential Energy (PE):

- Potential energy is the energy stored due to the position or configuration of the

object. In oscillating systems, this can be elastic potential energy (in springs) or

gravitational potential energy (in pendulums). - In an oscillating system, potential

energy is maximum when the object is at the extreme points of its motion (the

turning points) and zero at the equilibrium position. - Formula for potential energy

in a mass-spring system:

PE =
1

2
kx2 (1.8)

Where k is the spring constant and x is the displacement from the equilibrium posi-

tion.

Energy Exchange:

- During the motion, there is a continuous exchange between kinetic and potential

energy.

- At the equilibrium position, the velocity is at its maximum, so kinetic energy is

maximum and potential energy is zero.
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Figure 1.5: Double pendulum

- At the extreme points of the motion (maximum displacement), the velocity is zero,

so kinetic energy is zero and potential energy is maximum.

- This energy transfer is what drives the oscillation or vibration.

- Damping and Energy Loss:

- In real systems, damping (due to friction or air resistance) can cause energy loss in

the form of heat, leading to a gradual decrease in the amplitude of the oscillation.

- In a damped system, total mechanical energy decreases over time, eventually bring-

ing the motion to a stop.

Examples:

- Simple Harmonic Oscillator: In a mass-spring system, the mass moves back and

forth, converting potential energy stored in the spring into kinetic energy and vice

versa.

- Pendulum: In a pendulum, gravitational potential energy and kinetic energy ex-

change as the pendulum swings from side to side.

- Vibration of a string: When a guitar string vibrates, the tension in the string stores

potential energy, while the motion of the string translates that into kinetic energy.

Practical example Consider a mechanical system figure 1.5, below made

up of two point masses (m and m’) fixed to the free ends of a rod of mass

M and length 2L. This system is a rotational movement relative to or fixed

point A. Calculate the kinetic energy and the potential energy of the sys-

tem: Solution : The system is made up of 3 masses, so there are 3 kinetic

8



energies and 3 potential energies:

1- The kinetic energy KE

KETot = KEM +KEm +KEm′

KEM =
1

2
JM/Aθ̇

2

JM/A =
1

12
M(2L2) +M(AG)2

AG =
L

2

JM/A =
1

12
M(2L2) +M(

L

2
)2 =

7

12
ML2

⇒ KEM =
1

2

7

12
ML2θ̇2

Tm =
1

2
Jm/Aθ̇

2

Jm/A = [0 +md2]

d = L+
L

2
=

3L

2

Jm/A = m

(
3L

2

)2

⇒ Tm =
1

2

[
4

9
m

]
L2θ̇2

Tm′ =
1

2
Jm′/Aθ̇

2

Jm′/A = [0 +m′d2]

d =
L

2

9



Jm′/A = m′
(
L

2

)2

⇒ Tm′ =
1

2

[
1

4
m′
]
L2θ̇2

TTot =
1
2

7
12
ML2θ̇2 + 1

2

[
4
9
m
]
L2θ̇2 + 1

2

[
4
9
m′]L2θ̇2

⇒ TTot =
1

2

[
7

12
M +

9

4
m+

1

4
m′
]
L2θ̇2

2- The Potential energy PE

PETot = PEM + PEm + PEm′

PEM =Mgx

x =
1

2
L sin θ

PEM = 1
2
MgL sin θ
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PEm = mgh

h= dsin θ = 3
2
L sin θ

PEm = 3
2
mgL sin θ

PEm′ = −m′gh′

h′ =
d

3
sin θ =

1

2
L sin θ

PEm′ = −1
2
m′gL sin θ

PETot =
1
2
MgL sin θ + 3

2
mgL sin θ − 1

2
m′gL sin θ

PETot =
1
2
gL sin θ(M + 3m−m′)

Equilibrium Conditions

The equilibrium condition set if the equilibrium

F = 0

if

x = x0 ⇒ F
∣∣∣
x=x0
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For a force derived from a potential,

F = −∂U
∂x

The equilibrium condition is written as:

∂U

∂x

∣∣∣
x=x0

= 0 (1.11)

There are two types of equilibrium:

1. Stable Equilibrium :

Once the system is displaced from its equilibrium position, it returns to it. In

this case, the restoring force is:

f = −Cx

with

C ≻ 0

C = −∂f
∂x

= − ∂

∂x

(
−∂U
∂x

)
=
∂2U

∂x2
(1.13)

∂U

∂x

∣∣∣
x=x0

> 0 (1.14)

This condition of stable equilibrium is the condition for oscillation.

2- Unstable Equilibrium :

The system does not return to its equilibrium when displaced. In this case, the

unstable equilibrium condition is written as:

∂U

∂x

∣∣∣
x=x0

< 0 (1.15)
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In the case of rotation, we replace:

x→ θ

x0 → θ0

Figure 1.6: the variation of energies as a function of displacement

It is possible to graphically represent the evolution of three energies : potential energy

kinetic energy and total (mechanical) energy, The figure1-6 . 1

1When kinetic energy decreases, potential energy increases, and the opposite is also true. This
phenomenon is known as the conservation of total energy in a system.
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1.1.3 Lagrange Formalism

Generalized Coordinates

Generalized coordinates are the set of independent or related real viable coordinates

allowing to describe and configure all the elements of a system at any time t.

Exemple

The position of a point M in space can be determined by 3 coordinates Along the

axes (x, y, z)

The position of a solid body in space can be defined by six coordinates:

1. 03 coordinates relative to the center of gravity

2. 03 coordinates related to the Euler angles (θ, ϕ, ψ)

We designate by q1(t), q2(t), q3(t)....qN(t): The generalized coordinates.

q̇1, q̇2, q̇3.....q̇N : The generalized speeds.

Degree of freedom

This is the number of independent coordinates needed to determine the position of

each element of a system during its motion at any time: We write:

d = N − r (1.16)

with:

d : Degree of freedom

N :Generalized number of coordinates

14



r :Number of relations, between the generalized coordinates (number of links)

Exemple: let a mechanical system consist of two points M1 and M1 connected by a

rod of length L. Find the number of degrees of freedom.

Figure 1.7: Exemple

{
M1(x1, y1, z1)

M2(x2, y2, z2)
⇒ N = 6

l =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = Cst⇒ r = 1

so :

d = N − r = 6− 1 = 5 → d = 5

Lagrange formalism

This formalism is based on the Lagrange function

L = KE − PE

The set of equations of motion is written as:

n∑
i=1

{
d

dt

(
∂L

∂q̇i

)
−
(
∂L

∂qi

)}
= 0 (1.17)

Where:

L: Lagrange Function or Lagrangian;

KE The Kinetic Energy of the System;

15



PE The Potential Energy of the System;

qi The generalized coordinate and is the generalized velocity of the system.

For a system with one degree of freedom (N=1 or dof=1)

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= 0

For a one-dimensional system, Lagrange’s equation is written as :

d

dt

(
∂L

∂ẋ

)
−
(
∂L

∂x

)
= 0

For a rotational movement θ :

d

dt

(
∂L

∂θ̇

)
−
(
∂L

∂θ

)
= 0
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Chapter 2

Linear systems with a single degree

of freedom

2.1 Introduction : Study of undamped free oscil-

lations

A system that oscillates without the influence of any external force is known as a free

oscillator. Such systems are considered conservative.

2.1.1 Complex representation and Definition of Fourier se-

ries

To facilitate calculations we transform the sinusoidal quantities into exponential form

using the Euler form:

ejθ = cos θ + j sin θ

The periodic quantity can be expressed by the sums of the sine and cosine func-

tions in order to manipulate it physically and mathematically. This sum is called a

17



Fourier series. The Fourier series of a periodic function f(t) with a period T is defined

by:

f(t) = a0 +
∞∑
n=1

[an cos(nωt) + bn sin(nωt)]

- Where a0, an, and bn are the Fourier coefficients.

a0 =
1

T

∫ T

0

f(t) dt

an =
2

T

∫ T

0

f(t) cos(nωt) dt

bn =
2

T

∫ T

0

f(t) sin(nωt) dt

The angular frequency (ω) is called the fundamental frequency :

T =
2π

ω

- The frequencies (nω), multiples of ω, are called harmonics.

2.1.2 Study of the mechanical system

To Obtained the differential equation can be determined by: 1. second Newton’s law

2. Conservation of energy 3. Lagrange’s method.

Example : A mass m attached to the free end of a spring and moving

without friction in a vertical direction.

Newton’s dynamic principle applied to mass

∑−→
F = m−→a

18



Figure 2.1: Harmonic oscillator

Projection on the ox axis:

mg⃗ + T⃗ = ma⃗

mẍ = mg − T

⇔ mẍ = mg − k(x+∆l)

⇔ mẍ = mg − kx− k∆l

In equilibrium

∑−→
F =

−→
0

mg⃗ + T⃗ = 0⃗

mg − k(∆l) = 0

Equilibrium conditions ⇒

19



mẍ = −kx+mg − k∆l︸ ︷︷ ︸
0

mẍ = −kx

⇔ mẍ+ kx = 0

⇒ ẍ+ ω2
0x = 0

This is the differential equation of motion

Energy Conservation

ETot = T + U =
1

2
mẋ2 +

1

2
kx2

In a free system, the mechanical (or total) energy is conserved, thus:

dETot

dt
= 0 ⇒ mẍẋ+ kẋx = 0

⇒ ẍ+
k

m
x = 0 ⇔ ẍ+ ω2

0x = 0

Lagrange Method

The Lagrangian of the system L is:

L = T − U

Where T is the kinetic energy and U is the potential energy. So L equal :

L = T − U =
1

2
mẋ2 − 1

2
kx2

The Lagrangian formalism:

d

dt

(
∂L

∂ẋ

)
−
(
∂L

∂x

)
= 0 (2.1)
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By substituting (I.18) in .{
d
dt

(
∂L
∂ẋ

)
= d

dt

(
∂L
∂ẋ

)
= d

dt
(mẍ) = mẍ

∂L
∂x

= −kx

2.1.3 Solution of the Differential Equation

The solution of the equation:

ẍ+
k

m
x = 0 ⇔ ẍ+ ω2

0x = 0

is of the form :

x(t) = Aert

where r is a real number and A is a positive constant.

ẋ = Arert///ẍ = Ar2ert ⇔ (r2 − ω2
0)Ae

rt = 0{
r1 = iω0

r2 = −iω0

}
We have two solutions:

x1(t) = A1e
r1 = A1e

iω0t///x2(t) = A2e
r2 = A2e

−iω0t

x(t) = A(eiω0t + e−iω0t)

The general solution of the equation of motion :

x(t) = x1(t) + x2(t) = A(eiω0t + e−iω0t)

According to Euler’s relation :

e±iω0t = cos(ω0t)± i sin(ω0t)
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SO :

x(t) = A1(cos(ω0t) + i sin(ω0t)) + A2(cos(ω0t)− i sin(ω0t))

x(t) = (A1 + A2) cos(ω0t+ (A1 − A2)i sin(ω0t)

x(t) = B cosω0t+ C sinω0t

Where : {
B = cos θ

C = sin θ

So:

x(t) = D cos θ cosω0t+D sin θ sinω0t = D cos(ω0t+ φ)

D and φ are constants deduced from the initial conditions. The oscillations are

Figure 2.2: Sinusoidal motion

sinusoidal in amplitude and natural period:

T0 =
2π

ω0

= 2π

√
m

k

Study of the electrical system

Let us consider an electrical circuit C L

∑
i

Vi = 0
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VC + VL = 0

L
di

dt
+
q

c
= 0

where :

i =
dq

qi
⇒ Lq̈ +

q

c
= 0 ⇔ q̈ +

1

LC
q = 0

⇒ q̈ + ω2
0 = 0

q(t) = Q cos(ω0t+ φ)

with :

ω0 =
1√
LC

Energetic Aspects

Em = T + U{
T = 1

2
mẋ2

U = 1
2
kx2

x(t) = A cos(ω0t+ φ)// ˙x(t) = −Aω0 sin(ω0t+ φ){
T = 1

2
m(−Aω0 sin(ω0t+ φ))2

U = 1
2
k(A cos(ω0t+ φ))2

From an energetic point of view, this oscillator transforms elastic energy into

kinetic energy and vice versa.

Em =
1

2
kA2 sin2(ω0t+ φ) +

1

2
kA2 cos2(ω0t+ φ) ⇔ Em =

1

2
kA2

ω2
0 =

k

m

- The mechanical energy of an oscillator is proportional to the square of the

amplitude (see Chapter 1: Presentation of Mechanical Energy).
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2.1.4 Electro-mechanical Analogy

By comparing the differential equations of the elastic pendulum and the LC electrical

circuit, the following electromechanical analogy can be established:

Potential Energy: corresponds to the energy in the capacitor.

Electrical System Mechanical System
ẍ+ k

m
x = 0 q̈ + 1

LC
q = 0

Elongation: x Charge : q
Mass : m Inductance : L
Ressort : k Inverse de la capacité 1

C

Kinetic energy: 1
2
mẋ2 Energy of the coil 1

2
L
(
dq
dt

)2
Potential energy: 1

2
kx2 Capacitor energy 1

2

[
q2

c

]
Table 2.1: Electromechanical Analogy (Free Motion)
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Chapter 3

Single degree of freedom damped

free linear systems

3.1 Introduction to Damped Free Oscillation Types

of Friction

”A part of the oscillator’s energy is transferred to the external environment (dissipated

through friction or radiation). The amplitude of the oscillations decreases over time,

and the oscillator eventually comes to a stop.”

3.2 Types of Friction

The equations of motion depend on the nature of friction. The solution to the equation

of motion is only possible with certain types of friction.
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3.2.1 Solid Friction

The force of friction is proportional ∼ to the normal reaction of the support.

Ff = −sgn(ν)µR (3.1)

With:

F : Restoring force F = −kx
µ : Coefficient of dynamic friction ̸= static friction.

Figure 3.1: Solid Friction

3.2.2 Fluid or Viscous Friction

The fluid friction force is proportional ̸= to and opposite to the velocity.

Ff = −αυ (3.2)

With α ≻ 0

3.2.3 Friction in Highly Viscous Media

The friction in highly viscous media is proportional ̸= to the square of the veloc-

ity. The equation of motion is non-linear and generally does not have an analytical

solution.
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Figure 3.2: Viscous Friction

3.2.4 Other Complex Types of Friction

In this course, we will limit ourselves to viscous friction forces that are proportional

to velocity. The expression for the viscous friction force is as follows:

Fq = −αq̇ (3.3)

With: α The coefficient of viscous friction α : [N. s
m
q : The generalized coordinate of

the system q̇ : The generalized velocity of the system. In a one-dimensional x motion,

the force is expressed as:
−→
f = −α−→ν = −αẋ−→u

In mechanics, the damper is represented by figure 3.3.
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Figure 3.3: Represent of damper

3.3 Lagrange’s equation in a damped system

”If friction f = −αq̇ exists, the Lagrange equation becomes:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Fq

Under the action of friction forces, the system dissipates (loses) mechanical energy in

the form of heat, so there is a relationship between the forceFq and the dissipation

function D on one side, and the viscous friction coefficient on the other side α.

Fq = −∂D
∂q̇

(3.4)

with :

D =
1

2
αq̇2

The Lagrange equation for a damped system becomes:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= −∂D

∂q̇
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3.4 Mass-Spring-Damper System Differential Equa-

tion

3.4.1 The equation of motion

To study the motion of such a system, we can use the fundamental relation of dy-

namics (FRD) and the Lagrange relations.

A- Fundamental Relation of Dynamics FRD :

∑−→
F ext = m−→γ

−→
P +

−→
F R +

−→
F α = m−→γ

Projection on ox:

mg − k(x+ x0)− αẋ = mẍ

mg − kx0︸ ︷︷ ︸
=0

+ kx− αẋ = mẍ

⇒ mẍ+ αẋ+ kx = 0

ẍ+
α

m
ẋ+

k

m
x = 0

This is homogeneous second degree linear differential equation.

B-Lagrange method

Kinetic energy:

T =
1

2
mẋ2

Potential energy:

U =
1

2
kx2

Dissipation function:

D =
1

2
αẋ2
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Figure 3.4: Mass-spring-damper system In balance and in motion

Lagrange function:

L = T − U

⇒ L =
1

2
mẋ2 − 1

2
kx2

Lagrange formalism:
d

dt

(
∂L

∂ẋ

)
−
(
∂L

∂x

)
= −∂D

∂ẋ
d
dt

(
∂L
∂ẋ

)
= mẍ

∂L
∂x

= −kx
∂D
∂ẋ

= αẍ

By replacing in equation (III.1) we will have:

mẍ+ kx = −αẋ

⇒ ẍ+
α

m
ẋ+

k

m
x = 0

This is the differential equation of motion in the case of a free damped system.

As in the case of the undamped harmonic oscillator, the natural frequency of the

system is ω0 = k
m
. However, a new term associated with the damping parameter

appears
(
α
m

)
. This coefficient is equal to λ = α

2m
, with λ being the damping factor.
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Therefore, the equation of motion is written as:

ẍ+ 2λẋ+ ω2
0x = 0 (3.5)

3.4.2 Solution of the Equation of Motion

Equation (3.5) is a second-order differential equation without an external term. The

set of solutions to this equation forms a 2-dimensional vector space. The general

solution of this equation can be expressed as a linear combination of two solutions

that form a basis. This basis can be found by focusing on exponential time solutions.
x(t) = Aert

˙x(t) = Arert

(̈x(t)) = Ar2ert

We substitute the three terms into equation (3.5), which gives:

Ar2e−iωt + 2λAre−iωt + ω2
0Ae

−iωt = 0

By factoring Ae−iωt , we obtain: (3.6)

Ae−iωt(r2 + 2λr + ω2
0) = 0 (3.6)

Equation (3.6) is known as the characteristic equation. It is a second-degree

equation and can yield either two distinct real roots, a double root (within the real

numbers), or two complex roots. The reduced discriminant is calculated as follows:

∆ = λ2 − ω2
0

Three regimes are to be studied:
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Heavily Damped (Aperiodic) Regime

In this regime, the discriminant of the characteristic equation is positive, leading to

two distinct real roots. This indicates that the system returns to equilibrium without

oscillating, meaning it is aperiodic. The solution to the equation of motion is therefore

a sum of two exponentially decaying terms, each associated with one of the real roots.

∆ > 0 ⇒ λ > ω0{
r1 =

−2λ+
√
∆

2
= −λ+

√
λ2 − ω2

0

r2 =
−2λ−

√
∆

2
= −λ−

√
λ2 − ω2

0

x(t) = A1e
r1t + A2e

r2t ⇒ x(t) = A1e
−λ+

√
λ2−ω2

0t + A2e
−λ−

√
λ2−ω2

0t

x(t) = e−iωt
[
A1e

−λ+
√

λ2−ω2
0t + A2e

−λ−
√

λ2−ω2
0t
]

The coefficients A1 and A2 are determined by the initial replacement and speed

conditions.

Figure 3.5: The aperiodic regime

By displacing the system from its equilibrium position, it no longer oscillates

and comes to a complete stop after a certain amount of time, which depends on the
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damping coefficient. The larger the damping coefficient, the shorter the stopping

time. This regime is called aperiodic, and the damping is heavy.

The term
√
λ2 − ω2

0 is not considered an angular frequency because, in the case

of a heavily damped regime, there is no oscillation around the equilibrium position.

Critical Aperiodic Regime

This corresponds to the case where the reduced discriminant is zero.

∆ = 0 ⇔ λ = ω0

The characteristic equation has a real double root.

r1 = r2 = −λ

Thus, the function e−λt is a solution of the differential equation.

The second solution can be obtained by noting that te−λt it is also a solution. The

general solution is then written as:

x(t) = Ate−λt +Be−λt ⇒ x(t) = (At+B)e−λt

In the case of the ”critical aperiodic regime”, where the discriminant of the char-

acteristic equation is zero, we have a double real root. For a second-order differential

equation of the form:

m
d2x

dt2
+ b

dx

dt
+ kx = 0

its characteristic equation is:

r2 + 2ζω0r + ω2
0 = 0
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where:

- ω0 =
√

k
m

is the undamped natural frequency, - ζ = b
2
√
km

is the damping ratio.

In the critical damping case, ζ = 1, so the discriminant is zero, and the charac-

teristic equation has a double root r = −ω0. The general solution is then:

x(t) = (A+Bt)e−ω0t

where A and B are constants determined by initial conditions. λ = α
m

ω0 =
√

k
m

⇒ λ = ω0 ⇒
α2

4m2
=

k

m

Where C: critical αC = 2
√
km. The critical aperiodic regime is the one in which the

system returns to its equilibrium position more quickly than in any other aperiodic

regime.

Figure 3.6: Critical aperiodic regime

The damping is known as critical damping. The critical regime plays an important

role in certain practical applications and the design of measuring instruments, as after
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a disturbance, the system returns to its rest position as quickly as possible without

overshooting it.

Note

For strong damping (λ ≥ ω0), the system returns to its equilibrium position without

oscillating; thus, a damped oscillator does not always oscillate.

Pseudo-periodic regime

A pseudo-periodic regime is a term often used in the context of dynamic systems,

particularly in physics, engineering, and mathematics. It describes a behavior that

appears to have a regular, periodic structure but doesn’t precisely repeat in the same

way as true periodic behavior. In other words, while the system may seem to exhibit

a repetitive pattern, the intervals or amplitudes might vary slightly or drift over time,

preventing exact repetition.

Corresponds to the case where the reduced discriminant is negative:

∆ < 0 ⇔ λ < ω0

∆=́(−1)(ω2
0 − λ2) = i2(ω2

0 − λ2)

With:ωα the damping pulsation or the pseudo-pulsation : ωα =
√
ω2
0 − λ2 Thus, the

solutions to the differential equation are:

x(t) = A1e
(−λ−i

√
∆)t + A2e

(−λ+i
√
∆)t

x(t) = e−λt(A1e
−i

√
∆t + A2e

+i
√
∆t)

The solution to the equation:

x(t) = Ae−λt(A cosωαt+B sinωαt)

x(t) = A cos(ωαt− φ)

35



The constants A and φ are determined by the initial conditions. The system performs

oscillations of decreasing amplitudes and of ”pseudo-periodic regime” given by:

Tα =
2π

ωα

Tα =
2π

ωα

⇒ Tα =
2π√
ω2
0 − λ2

ω2
α = ω2

0

√
1− ζ2

Tα =
2π√
ω2
0 − λ2

=
T0√
1− ζ2

Tα =
T0√
1− ζ2

⇒ T0 < Tα

if λ ≪ ω0 ⇒ ζ2 = 1 so T − α ≃ T0 The curve x(t) is enveloped by the two expo-

nentials Ae−λt and −Ae−λt since, in modulus, cos(ωαt − φ) cannot exceed one. We

see that x becomes zero as t tends towards its equilibrium position (see figure 3.7).

There is a pseudo-frequency, and the motion is described as pseudo-periodic. The

damping is weak. It should be noted that the pseudo-frequency ωα is less than the

Figure 3.7: Oscillations (pseudo-period)

natural frequency ω0, and the pseudo-period Tα is greater than the period T0 of the

corresponding undamped oscillator.
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In mechanical vibration, a *pseudo-periodic regime* is generally represented by

mathematical models that combine periodic and quasi-periodic terms or include non-

linear effects. Such models often use coupled differential equations or introduce slowly

varying terms to capture deviations from true periodicity. Here are some commonly

used equations and formulations for describing pseudo-periodic behavior in mechan-

ical systems:

Harmonic Oscillator with a Slowly Varying Frequency or Amplitude

A basic model for pseudo-periodic vibration can start with a harmonic oscillator with

slowly varying parameters:

x(t) = A(t) cos(ω(t)t+ ϕ)

where: - A(t) is a slowly varying amplitude function, - ω(t) is a time-dependent

angular frequency, - ϕ is a phase constant.

In the pseudo-periodic regime, A(t) and ω(t) change slowly over time, introducing

small variations in the otherwise periodic motion.

Damped Forced Oscillator with Two Competing Frequencies

A damped oscillator driven by two or more incommensurate frequencies can also

exhibit pseudo-periodic behavior:

m
d2x

dt2
+ c

dx

dt
+ kx = F1 cos(ω1t) + F2 cos(ω2t)

where: - m is the mass, - c is the damping coefficient, - k is the stiffness, - F1 and

F2 are forces applied at two different frequencies ω1 and ω2.

When ω1 and ω2 are not integer multiples of each other, the system will exhibit

a pseudo-periodic regime due to the quasi-periodic forcing.
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Nonlinear Oscillator with Weak Nonlinearity

A weakly nonlinear oscillator can also exhibit pseudo-periodic behavior, particularly

if there’s a resonance or near-resonance between different vibrational modes:

d2x

dt2
+ ω2

0x+ αx3 = 0

where α is a small nonlinear term. This equation is known as the *Duffing equa-

tion*.

In the pseudo-periodic regime, nonlinear effects (here through αx3) introduce

slight irregularities in the oscillation patterns, causing a deviation from simple peri-

odicity.

3.4.3 The logarithmic decrement

(or *logarithmic decrease*) of a pseudo-periodic regime is a measure of the rate at

which the amplitude of oscillations decays in a damped vibrational system. It quan-

tifies the rate of energy dissipation over each cycle, helping to characterize damping

in systems that do not oscillate with a true periodicity.

In the pseudo-periodic regime, where the oscillations are damped but not strictly

periodic, the logarithmic decrement can still be applied to approximate the decay be-

havior. It’s defined by the natural logarithm of the ratio of successive peak amplitudes

in the damped oscillation.

Definition of Logarithmic Decrement

The logarithmic decrement δ is defined as:

δ = ln

(
x(t)

x(t+ Tα)

)
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where: - x(t) is the amplitude at a given time t, - x(t+Tα) is the amplitude after

one pseudo-period Tα.

-Equation for Logarithmic Decrement in Damped Systems

For a lightly damped system in a pseudo-periodic regime, the logarithmic decre-

ment can be approximated as:

δ =
2πλ

ωα

where: - λ is the damping coefficient (associated with the decay rate of the

envelope Ae−λt), - ωα is the pseudo-frequency (the damped angular frequency).

- Decay of Amplitude in Pseudo-Periodic Motion

The amplitude A(t) of the pseudo-periodic motion decreases over time according

to the exponential envelope:

A(t) = A0e
−λt

The motion x(t) in the pseudo-periodic regime is given by:

x(t) = A0e
−λt cos(ωαt+ ϕ)

In this equation: - A0 is the initial amplitude, - ϕ is the phase shift, - cos(ωαt+ϕ)

represents the oscillatory component with the pseudo-frequency ωα.

The logarithmic decrement, δ, provides a way to quantify how quickly the oscilla-

tions decay over time and is particularly useful for identifying damping characteristics

in lightly damped systems. For a damped system:

x(t) = Ce−λtsin(ωαt+ φ)
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⇒ δ = ln
Ce−λtsin(ωαt+ φ)

Ce−λ(t1+Tα)sin(ωα(t1 + Tα) + φ)

⇒ δ = ln eλTα = λTα

λTα = λ
Tα√
1− ζ2

= ζω0
Tα

1− ζ2
=

2πζ√
1− ζ2

with :

δ = ln
x(t1)

x(t2)
= 2π

ζ√
1− ζ2

= λTα

Note:

For multiple periods:

T = Tα(t1 = t2 + nTα) ⇒ δ ln( x(t1)
x(t1+nTα)

) = 2π nζ√
1−ζ2

The pseudo-period and the logarithmic decrement are only meaningful if the

regime is pseudo-periodic

3.4.4 Total Energy of a Damped Harmonic Oscillator

We consider that:

x(t) = Ae−λt sin(ωt+ φ)

˙x(t) = Ae−λtω cos(ωt+ φ)− Aλe−λt sin(ωt+ φ)

In the case of very weak damping λ → 0 , the pseudo-frequency is approximately

equal to the natural frequency of the system, meaning:

ω = ω0 ⇒ ω =

√
k

m

The total energy is written as:

ET (T ) = U + T ⇒

ET (r) =
1

2
kA2e−iωt sin2(ωt+ φ)

1

2
mA2

[
e−2λtω2 cos2(ωt+ φ) + e−2λt sin2(ωt+ φ)

]
−2λω sin(ωt+ φ) cos(ωt+ φ)
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If we make the second and third terms of the kinetic energy tend towards 0, we obtain

for the total energy the following three expressions:

ET (t) =
1

2
kA2e−2λt

Where:

ET (t) =
1

2
mω2

0e
−2λt

3.4.5 The quality factor

In a damped harmonic oscillator, there is a dissipation of mechanical energy. This

dissipation is characterized by the coefficient or quality factor,Q, which accounts for

the oscillator’s efficiency or quality. The quality factor, denoted as Q, is a measure

of an oscillator’s efficiency in retaining its energy. A high Q-factor indicates that

the oscillator effectively conserves its energy, experiencing minimal energy loss per

cycle. In a damped harmonic oscillator (such as a pendulum or an oscillating elec-

trical circuit), damping causes a gradual loss of mechanical energy due to friction or

resistance. The quality factor Q is inversely related to this energy dissipation: the

higher the Q-factor, the better the oscillator can sustain oscillations over a longer

period without significant energy loss.

Q = 2π
Em

∆E

Q = 2π
ET (t)[

1
2
kA2e−iωt − 1

2
kA2e−2λ(t+T )

]
⇒ Q = 2π

1
2
kA2e−2λt[

1
2
kA2e−iωt − 1

2
kA2e−2λ(t+T )

]
⇔ Q = 2π

1

1− e−2λt

It is assumed that the damping is very low.

λ→ 0 and e−2λt = 1− 2λT

Q =
π

λT
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Either :

Q =
ω

2λ

Q =
ω0

2λ

∆ ≥⇒ λ ≥ ω0

Q ≤ 1

2

There are no oscillations, the regime is aperiodic, the pseudo periodic is written:

T =
2λ

ω0

√
1− 1

4Q2

T0 =
Ta√

1− 1
4Q2

3.4.6 Electric Harmonic Oscillator

The oscillating circuit, in addition to having an inductance L and a capacitance C,

also includes an ohmic resistance R. In this type of circuit, the inductance L and

capacitance C allow oscillations of electric charge or current, while the resistance R

introduces damping. This damping causes the oscillations to gradually decrease in

amplitude over time, resulting in energy dissipation through the resistor.

UR + Uc + UL = 0

Ri(t) +
1

c
q + L

di

dt
= 0

R
dq

dt
+

1

c
q + L

d2q

dt2
= 0

Rq̇ +
1

C
q + Lq̈ = 0

q̈ +
R

L
q̇ +

1

LC
q = 0

⇒ q̈ + 2λq̇ + ω2
0q = 0
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With: {
λ = R

2L

ω2
0 = 1

LC

SO :

q̈ + 2λq̇ + ω2
0q = 0 ⇒

 λ = R
2L

ω0 =
√

1
LC

Note

For critical damping λ = ω0 ⇒ R
2L

=
√

1
LC

So : R = Rc = 2
√

L
C

Figure 3.8: Electric harmonic oscillator
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Feature Mechanical oscillations Electrical oscillations
Equation of motion mẍ+ λẋ+ kx = 0 Lq̈ +Rq̇ + 1

C
q = 0

Own pulse ω0 =
√

k
m
(rds−1) ω0 =

√
1

LC

Coefficient of viscous friction λ(N.s.m−1) R(Ω)
Damping coefficient α = λ

2m
(s−1) α = R

2L

Damped pulsation ωα =
√

k
m
− 2λ

4m2 (rd.s
−1) ωα =

√
1

LC
− R2

4L2

Quality factor Q =
√

mk
λ

Q = l
R

√
L
R

Kinetic energy T = EK = 1
2
mẋ2(J) EBO = 1

2
Li2

Potential energy Ep =
1
2
kẋ2(J) Eco =

q2

C

Dissipation function D = 1
2
αẋ2 ED = 1

2
Ri2

Table 3.1: Analogy between mechanical and eclectic oscillations

44



Chapter 4

Forced linear system with one

degree of freedom

Resonance is a phenomenon that occurs when a system naturally oscillates at a spe-

cific frequency, called its **natural frequency**. When an external force or energy

source drives the system at this exact frequency, the system’s oscillations get amplified

significantly.

Imagine pushing someone on a swing. If you push them at just the right moments,

matching the swing’s natural rhythm, each push adds more energy, and they go higher

and higher. This is resonance: your pushes (the external force) are timed perfectly

with the swing’s natural frequency, making the motion much larger.

In other contexts, like in bridges or buildings, resonance can be dangerous. If vi-

brations from wind, traffic, or other sources match the structure’s natural frequency,

it can cause large oscillations and even structural failure. That’s why engineers care-

fully design structures to avoid resonance with common external forces.
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4.1 Definition of Forced Oscillation

To maintain continuous motion, energy must be regularly supplied to the oscillator.

This is achieved through an external driving force, which keeps the system oscillating.

After a transient period, the system oscillates at the same frequency as the external

driving force.

4.2 Lagrange’s Equation for Forced Systems

When there is an external driving force F (t), Lagrange’s equation is written as: - For

translational motion:
d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F (t)

- For rotational motion:
d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= µ(t)

where µ(t) = Fext · L · ∂r
∂θ
.

- Fext: The applied external force. - L: Lever arm distance (distance from the

axis of rotation to the point of force application). - r: The distance traveled by the

mass in the direction of the force.

4.2.1 Example: Mass-Spring-Damper System

Consider the case of a vertical elastic pendulum, as shown in the figure:

It consists of a spring with stiffness constant k and a mass m. The mass is sub-

jected to a damping force F⃗d = −αẋ and an external driving force F⃗ext = F0 sin(Ωt).

The Lagrange equation is written as:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= −∂D

∂ẋ
+ Fext · t
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- Kinetic Energy of the System: T = 1
2
mẋ2

- Potential Energy of the System: U = 1
2
kx2

- Dissipation Function of the System: D = 1
2
αẋ2

- Lagrangian Function:L = T − U = 1
2
mẋ2 − 1

2
kx2

By substituting into Equation (IV.1), we have:

Figure 4.1: Mass-Spring-Damper System

Given:
d

dt

(
∂L

∂ẋ

)
= mẍ

∂L

∂x
= −kx

∂D

∂ẋ
= αẋ
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Substituting these into the Lagrange equation:

mẍ+ kx = −αẋ+ F0 sin(Ωt)

Dividing by m:

ẍ+
α

m
ẋ+

k

m
x =

F0

m
sin(Ωt)

Defining 2λ = α
m

and ω2
0 = k

m
, we get:

ẍ+ 2λẋ+ ω2
0x =

F0

m
sin(Ωt)

This is a second-order differential equation with a driving term.

4.3 Solution to the Differential Equation

The solution to this differential equation is the sum of the solution without the driving

term (homogeneous solution) xH(t) and a particular solution of the equation with the

driving term xp(t), such that:

xG(t) = xH(t) + xp(t)

- xH(t): The transient response. - xp(t): The steady-state response.

4.3.1 Transient Response

This is the solution to the homogeneous equation:

ẍ+ 2λẋ+ ω2
0x = 0
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For weak damping (λ < ω0), the solution is:

xh(t) = Ce−λt cos(ωdt+ θ)

where ωd =
√
ω2
0 − λ2.

Solving **forced oscillations** involves analyzing a system where an external force

is driving the oscillation. This force is typically periodic, such as F (t) = F0 sin(Ωt),

where F0 is the amplitude and Ω is the driving frequency. The general approach to

solving forced oscillations combines the natural response of the system (the solution

without the driving force) with the particular solution due to the external force.

Here’s a step-by-step method for solving forced oscillations, especially for a damped

mass-spring system:

Step 1: Set Up the Differential Equation

For a damped mass-spring system with a mass m, damping coefficient c, spring

constant k, and external driving force F (t) = F0 sin(Ωt), the equation of motion is:

mẍ+ cẋ+ kx = F0 sin(Ωt)

This can be rewritten as:

ẍ+ 2λẋ+ ω2
0x =

F0

m
sin(Ωt)

where: - λ = c
2m

is the damping coefficient. - ω0 =
√

k
m

is the natural frequency

of the undamped system.

Step 2: Find the Homogeneous Solution (Natural Response)

The **homogeneous equation** is the equation without the driving force:

ẍ+ 2λẋ+ ω2
0x = 0
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The solution to this equation, xh(t), depends on the damping ratio ζ = λ
ω0
:

1. Underdamped Case (ζ < 1):

xh(t) = e−λt (C1 cos(ωdt) + C2 sin(ωdt))

where ωd = ω0

√
1− ζ2 is the damped natural frequency.

2. Critically Damped Case (ζ = 1):

xh(t) = (C1 + C2t)e
−λt

3. Overdamped Case** (ζ > 1):

xh(t) = C1e
−(λ+ωr)t + C2e

−(λ−ωr)t

where ωr =
√
λ2 − ω2

0.

The constants C1 and C2 are determined by initial conditions.

Step 3: Find the Particular Solution (Forced Response)

To find the particular solution, xp(t), which results from the driving force, assume

a solution with the same form as the driving force. For a sinusoidal force F (t) =

F0 sin(Ωt), try:

xp(t) = A sin(Ωt) +B cos(Ωt)

Substitute xp(t) and its derivatives into the original differential equation and solve

for A and B. This leads to:

A =
F0/m√

(ω2
0 − Ω2)2 + (2λΩ)2

and the phase shift ϕ, where:

tanϕ =
2λΩ

ω2
0 − Ω2
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The particular solution can then be written as:

xp(t) = A sin(Ωt+ ϕ)

Step 4: Write the General Solution

The total solution x(t) is the sum of the homogeneous and particular solutions:

x(t) = xh(t) + xp(t)

This includes both the transient (homogeneous) response, which decays over time

if there is damping, and the steady-state (particular) response, which oscillates at the

driving frequency Ω indefinitely.

Step 5: Apply Initial Conditions (If Necessary)

If initial conditions are provided, use them to determine the constants C1 and

C2 in the homogeneous solution. This will give the complete solution tailored to the

specific starting conditions of the system.

Step 6: Analyze the Solution for Resonance

Resonance occurs when the driving frequency Ω is close to the natural frequency

ω0 of the system. In this case, the amplitude of the particular solution xp(t) can be-

come very large, as the system absorbs energy from the external force more efficiently.

This can be seen in the formula for A, where the denominator becomes very small if

Ω ≈ ω0, leading to large oscillations.

4.3.2 Summary

1. Set up the differential equation with the driving force.
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2. Solve the homogeneous equation for the transient response.

3. Find the particular solution for the steady-state response using the form of the

driving force.

4. Combine the solutions to get the general response.

5. Apply initial conditions if given.

6. Check for resonance conditions, as large amplitudes may result when the driving

frequency matches the system’s natural frequency.

4.3.3 Steady-State Response

This solution has a form similar to the driving force and solves the complete equation

of motion:

xp(t) = A sin(Ωt+ ϕ)

This represents the long-term behavior of the system as it oscillates at the driving

frequency Ω.

4.4 Study of the Steady-State Regime

In the steady-state regime, only the particular solution remains:

x(t) = xp(t)

Using complex representations, the amplitude A of the oscillation can be derived

as:

A =
F0√

(k −mΩ2)2 + (αΩ)2

52



The phase ϕ, representing the phase difference between the displacement and the

driving force, is given by:

ϕ = arctan

(
αΩ

k −mΩ2

)

4.4.1 Study of the Steady-State Response

In the steady-state regime, only the particular solution exists, so:

x(t) ≈ xp = A sin(Ωt+ ϕ)

Substituting into the differential equation:

ẍp + 2λẋp + ω2
0xp =

F (t)

m

Using complex representations:

1. Assume

xp = Ãei(Ωt+ϕ) = ÃeiΩt, whereÃ

is the complex amplitude.

2. Then:

−ẋp = iΩÃeiΩt

−ẍp = −Ω2ÃeiΩt

3. The driving force F (t) = F0e
iΩt

Substitute these into the equation to get:

−Ω2ÃeiΩt + 2iλΩÃeiΩt + ω2
0Ãe

iΩt =
F0

m
eiΩt
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Simplify to find the complex amplitude Ã:

Ã =
F0

m

ω2
0 − Ω2 + 2iλΩ

To express this in terms of magnitude, we separate real and imaginary parts:

|Ã| =
F0

m√
(ω2

0 − Ω2)2 + (2λΩ)2

Thus, the solution for this forced oscillator in the steady-state regime is:

x(t) = A sin(Ωt+ ϕ)

where the amplitude A is:

A =
∣∣∣Ã∣∣∣ = F0

m√
(ω2

0 − Ω2)2 + (2λΩ)2

This describes the amplitude of the oscillation at the driving frequency Ω, taking

into account the damping in the system. The expression for the complex amplitude

Ã is given by:

Ã =
F0

m

(ω2
0 − Ω2) + 2iλΩ

=
F0

m
(ω2

0 − Ω2)

(ω2
0 − Ω2)

2
+ 4λ2Ω2

− i
F0

m
· 2λΩ

(ω2
0 − Ω2)

2
+ 4λ2Ω2

The steady-state solution for this forced oscillator can then be written as:

x(t) = A sin(Ωt+ ϕ)

where the amplitude A of the oscillation is:
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A = |Ã| =

√√√√( F0

m
· (ω2

0 − Ω2)

(ω2
0 − Ω2)2 + 4λ2Ω2

)2

+

(
F0

m
· 2λΩ

(ω2
0 − Ω2)2 + 4λ2Ω2

)2

This amplitude A depends on the natural frequency ω0, the damping coefficient

λ, the driving frequency Ω, and the driving force F0. This relationship illustrates

how the amplitude of forced oscillations changes with different driving frequencies

and damping factors.

Explanation of the Solution and Important Remarks

The **amplitude** A of the oscillation is given by:

A =
∣∣∣Ã∣∣∣ = F0

m√
(ω2

0 − Ω2)2 + (2λΩ)2

The **phase** ϕ of the motion, which represents the phase shift between x(t)

and the driving force F (t), is given by:

tanϕ =
−2λΩ

ω2
0 − Ω2

Thus, the particular solution xp(t) can be written as:

xp(t) =
B√

(ω2
0 − Ω2)2 + (2λΩ)2

sin

(
Ωt+ arctan

(
2λΩ

ω2
0 − Ω2

))

Important Remarks

1. General Solution**:

- The general solution is the sum of two parts: - A **homogeneous solution**

with an amplitude and energy that decay over time until they become zero.

This is known as the **transient solution**. - A **particular solution** with
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a constant amplitude A and frequency matching the driving force, representing

the **steady-state** or **permanent solution**. - The amplitude A of the

particular solution is given by:

A =
B√

(ω2
0 − Ω2)2 + (2λΩ)2

2. Long-Term Behavior:

- Over time, the transient (homogeneous) solution disappears, leaving only the

steady-state oscillatory motion. - For times t < t0, the total motion is the sum

of the transient and permanent solutions:

x(t) = xp(t) + xh(t)

- For times t ≥ t0, only the steady-state motion remains:

x(t) = xp(t)

This analysis describes how the system initially has both transient and steady-

state components, but eventually, only the steady-state component persists.

The **damping ratio** is an important concept in many real-world systems, as

it helps to predict how systems respond to disturbances. Here are some practical

examples illustrating different damping ratios:

1. Car Suspension System :

- Underdamped (ζ < 1): Most car suspensions are designed to be slightly un-

derdamped. This allows the car to absorb shocks from bumps in the road while

returning to a stable position quickly. A perfectly underdamped suspension

provides a comfortable ride with controlled oscillations after hitting a bump.

- Overdamped (ζ > 1): If the suspension is overdamped, the car’s ride becomes

stiff and uncomfortable, as it takes longer to return to the neutral position.

This can cause the car to feel heavy and unresponsive.

- Critically Damped (ζ = 1): Some high-performance or luxury car suspensions
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Figure 4.2: Transitional regime and permanent regime

aim for near-critical damping to minimize oscillations, providing a smooth, quick

return to stability after a disturbance without noticeable bouncing.

2. Door Closers:

- Critically Damped (ζ = 1): Many automatic door closers, like those in office

buildings, are designed to be critically damped. This means the door will close

in the shortest possible time without bouncing or slamming shut. This provides

a smooth, controlled closing motion.

- Underdamped (ζ < 1): If the damping is too low, the door might close quickly

but could bounce slightly when it reaches the frame, which can be noisy and

potentially damaging over time.

- Overdamped (ζ > 1): If the door closer is overdamped, the door closes very

slowly, which can be inconvenient for people waiting for it to shut.
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3. Building and Bridge Design:

- Critically Damped or Overdamped (ζ ≥ 1): Tall buildings and bridges are

designed with damping mechanisms to resist oscillations caused by wind or

seismic activity. These structures often have **tuned mass dampers** or other

damping systems that provide critical or overdamping, which prevents swaying

or resonant oscillations.

- Underdamped: In cases where buildings or bridges have insufficient damping,

strong winds or earthquakes can cause prolonged oscillations. This was famously

seen in the Tacoma Narrows Bridge collapse, where wind-induced vibrations led

to oscillations that were not adequately damped.

4. Electronic Circuits (RLC Circuits) - In electronics, **RLC circuits** (circuits

with resistors, inductors, and capacitors) often require specific damping char-

acteristics:

- Underdamped (ζ < 1): Allows oscillations, which can be useful in signal

processing and radio frequency applications. For example, radio receivers use

underdamped circuits to tune into specific frequencies.

- Critically Damped (ζ = 1): Used when quick response without oscillations is

desired, such as in some filter circuits.

- Overdamped (ζ > 1): In cases where a slow response is acceptable, such as in

power supply circuits where stability is prioritized over speed.

5. Seismology and Earthquake Engineering:

- Overdamped (ζ > 1): Earthquake-resistant structures often incorporate heavy

damping to avoid oscillations during seismic events. Engineers use base isola-

tors and dampers to absorb energy from ground motion, allowing the structure

to settle without extensive oscillations.

- Critically Damped (ζ = 1): Some advanced earthquake-proof designs aim for

critical damping, allowing the building to return to rest as quickly as possible

after ground shaking stops.
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6. Aircraft Landing Gear:

- Critically Damped or Slightly Underdamped:

Aircraft landing gear is designed to absorb the impact energy upon landing

and dissipate it quickly. A slightly underdamped or critically damped response

allows the landing gear to compress and extend without causing the aircraft to

bounce excessively on the runway, providing stability and passenger comfort.

7. Sports Equipment (Tennis Rackets, Golf Clubs):

- Underdamped (ζ < 1): Some sports equipment, like tennis rackets and golf

clubs, use materials and designs that allow a slight rebound effect (underdamp-

ing) to transfer energy back to the ball effectively. However, if the damping is

too low, vibrations can be uncomfortable for the player.

- Overdamped: In some cases, extra damping materials (such as shock-absorbing

grips) are added to reduce vibrations, particularly for beginners or people

prone to joint pain. These materials increase the damping ratio to reduce the

”buzzing” feel after hitting the ball.

8. Audio Systems and Loudspeakers:

- Underdamped (ζ < 1): A slightly underdamped loudspeaker design can create

a fuller sound with strong bass, as it allows the speaker cone to oscillate more

freely. However, too little damping can lead to a ”boomy” sound with unwanted

resonances.

- Critically Damped or Overdamped: For a more accurate and clear sound,

especially for high-fidelity audio, critical or slightly overdamped designs are

preferred to avoid prolonged oscillations and provide precise sound reproduc-

tion.

- Underdamped (ζ < 1): Allows some oscillation, which can be beneficial or

desirable in systems that need to rebound or resonate (e.g., car suspensions, sports

equipment). - **Critically Damped (ζ = 1)**: Provides the quickest return to stabil-

ity without oscillations, ideal for systems requiring precise, controlled motion (e.g.,
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door closers, landing gear). - Overdamped (ζ > 1): Slows the return to stability with-

out oscillations, useful when stability is more important than response speed (e.g.,

seismic protection, heavy-duty machinery).

These examples demonstrate how engineers and designers use the damping ratio

to optimize the performance and safety of various systems in response to oscillations

or disturbances.

4.4.2 Resonance Phenomenon

Amplitude Resonance

We are going to study the variation of amplitude A as a function of the excitation

frequency Ω:

A(Ω) =
F0

m√
(ω2

0 − Ω2)2 + 4λ2Ω2

When: - Ω = 0:

A(0) =
F0

m

ω2
0

=
F0

k

- Ω → ∞:

A(∞) = 0

The maximum amplitude is obtained when dA
dΩ

= 0:

dA

dΩ
=

[2(−2λ)(ω2
0 − Ω2) + 8λ2Ω]F0

m

2((ω2
0 − Ω2)2 + 4λ2Ω2)

3
2

⇒ (−ω2
0 + Ω2) + 2λΩ = 0

⇒ Ω2 = ω2
0 − 2λ2
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This frequency is called the **resonant frequency** and is denoted by:

ΩR =
√
ω2
0 − 2λ2

At this frequency, the maximum amplitude exists only if:

λ <
ω0

2
; (ΩR > 0)

The maximum amplitude is then:

Amax =
F0

m · 2λ
√
ω2
0 − λ2

Figure 4.3: Variation of the amplitude a as a function of .

Variation of Phase as a Function of Ω

We have found:

tanϕ =
−2λΩ

ω2
0 − Ω2

dϕ

dΩ
= cos2 ϕ · d(tanϕ)

dΩ
and cosϕ =

1− Ω2

ω2
0√

(ω2
0 − Ω2)

2
+ 4λ2Ω2
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dϕ

dΩ
=

−2λ (ω2
0 + Ω2)

(ω2
0 − Ω2)

2
+ 4λ2Ω2

Observations:

- If Ω → 0: - Then tanϕ→ 0 and dϕ
dΩ

≈ − 2λ
ω0
.

- If Ω → ω0: - ϕ = π
2
, meaning the displacement is π

2
ahead of the excitation.

- When Ω → ∞: - tanϕ and dϕ
dΩ

tend toward 0. - Since dϕ
dΩ

is always negative, the

phase shift is −π.

Figure 4.4: Phase variation as a function of

Resonance Phenomenon and Quality Factor

The resonance phenomenon appears when the excitation frequency approaches the

natural frequency of the system.

In electrical systems, this phenomenon allows for the calculation of the quality

factor Q, which increases as:

Q =
Amax

A0

=
1

2ζ

Another practical method to determine the quality factor is:
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Figure 4.5: The resonance and the quality diminish

Q =
ω0

ω2 − ω1

where ω2 − ω1 represents the bandwidth.

4.4.3 Conclusion

- When Q decreases ⇒ ω2 − ω1 increases ⇒ the resonance curve becomes wider ⇒
the amplitude at resonance and the quality diminish. - The ends of the bandwidth

correspond to an amplitude that is
√
2 times smaller than at resonance.
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Chapter 5

Coupled Oscillators

5.1 Introduction

5.1.1

Coupled Oscillators

Definition:

Coupled oscillators refer to systems with two or more oscillators that interact or in-

fluence each other through a coupling mechanism. In coupled systems, the oscillators

are linked so that energy can transfer between them. This transfer of energy leads

to complex oscillatory behavior that depends on the nature of the coupling and the

characteristics of each oscillator.

Energy Exchange:

In coupled systems, the oscillators exchange energy. For example, in a mechanical

system, two pendulums connected by a spring can transfer energy back and forth
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as they oscillate. The coupling allows each oscillator’s motion to affect the other,

resulting in a shared dynamic response.

Types of Coupling in Mechanical Oscillators:

1. Elastic Coupling:

Here, the oscillators are connected by elastic elements, such as springs. The

springs provide a restoring force that influences the movement of each oscillator,

allowing them to interact. Elastic coupling can be set up with oscillators placed

either horizontally or vertically. When the system is disturbed, the oscillators

will start to oscillate, transferring energy through the spring.

2. Inertial Coupling:

In this case, the oscillators are connected by a mass, which introduces inertia to

the system. The mass acts as a bridge between the oscillators, causing them to

influence each other’s motion through the shared inertia. This type of coupling

is commonly seen in pendulums connected by a shared mass at their center.

—

5.2 Example of Coupled Free Oscillators

5.2.1 Mechanical Systems

Free Mechanical Oscillators Coupled by Elasticity:

In this setup, two masses m1 and m2 are connected by two springs with spring con-

stants k1 and k2. The springs create a force that acts on each mass, resulting in

coupled motion when one mass is displaced. The restoring force from each spring

causes energy to transfer between the two masses, leading to a synchronized oscilla-

tion Figure 5-1.
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Figure 5.1: Free mechanical oscillators coupled by elasticity.

-Diagram Explanation:

The diagram (Figure 5-1) shows two masses m1 and m2 connected by springs with

constants k1 and k2, representing an elastic coupling. When one of the masses is

moved, the springs exert forces that affect the motion of both masses, creating a

coupled oscillatory motion.

Free Mechanical Oscillators Coupled by Inertia:

Here, the coupling is achieved through a shared mass. For example, two pendulums,

each with masses m1 and m2, are connected by a rod with a mass in the middle.

The rod introduces inertia, linking the motion of the two pendulums so that their

oscillations affect each other. When one pendulum moves, it causes the center mass

to shift, influencing the motion of the other pendulum. -Diagram Explanation:

In Figure 5-2, two pendulums with masses m1 and m2 are shown, connected by a

rod with a central mass. This central mass acts as the coupling mechanism, allowing

the oscillations of each pendulum to influence each other through the inertia of the

central mass. -Elastic coupling (springs) for energy transfer through

elastic forces.

-Inertial coupling (central mass) for energy transfer through shared inertia.

Each type of coupling leads to different types of oscillatory behavior, influenced

by factors like the stiffness of the springs in elastic coupling or the mass distribution

in inertial coupling. These concepts are fundamental in understanding the dynamics

of coupled systems, which are prevalent in fields such as physics, engineering, and

biology. Here’s the translation and explanation:
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Figure 5.2: Free mechanical oscillators coupled by inertia

Viscous Coupling in Mechanical Oscillators:

In this configuration, the coupling is due to a ”viscous friction” mechanism. This

type of coupling is achieved through a damping element that introduces resistance to

the motion, leading to energy dissipation between oscillators. -Diagram Explanation:

Figure 5.3: Viscous Coupling in Mechanical Oscillators

Figure 5-3 illustrates two masses m1 and m2 connected by a damping element with

viscous friction coefficient α. The damping force between the masses allows for the
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transfer of energy in a way that gradually reduces the amplitude of oscillations due

to the dissipative nature of the viscous coupling.

Inertial Coupling in Electrical Oscillators:

This coupling is represented by an inductive link in an electrical circuit. Here, induc-

tors are used to couple two LC circuits. The inductors create a magnetic field that

allows the oscillations of one circuit to influence the other.

Figure 5.4: Inertial Coupling in Electrical Oscillators

- Diagram Explanation**:

Figure 5-4 shows two coupled LC circuits with inductors L1, L2, and L3 and capac-

itors C1 and C2. The inductive coupling allows energy transfer through the mutual

inductance, leading to synchronized oscillations between the circuits.

Viscous Coupling in Electrical Oscillators:

In electrical systems, viscous coupling is represented by a **resistive link**. A resistor

is used to connect two oscillating circuits, which introduces a damping effect similar

to mechanical viscous coupling.

- Diagram Explanation:

Figure 5-5 illustrates two LC circuits coupled by a resistor R between them. The re-

sistor introduces a damping effect, allowing energy dissipation. This coupling method

reduces the amplitude of oscillations over time, similar to mechanical viscous coupling.
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Figure 5.5: Viscous Coupling in Electrical Oscillators

These examples illustrate various ways of coupling oscillators, including: - Me-

chanical viscous coupling (damping force). - Electrical inertial coupling (inductive

link). - Electrical viscous coupling (resistive link).

Each coupling type affects the system dynamics by controlling energy transfer

and dissipation, impacting oscillation synchronization, amplitude, and frequency.

This diagram and accompanying text outline a system with two degrees of free-

dom, specifically a coupled mass-spring system. Here’s a translation and explanation

of each component:

5.3 Two Degrees of Freedom System

To analyze systems with two degrees of freedom, it’s essential to write two differential

equations of motion, which can be derived using Lagrange’s equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

where q1 and q2 represent the generalized coordinates of the system.

For a system with two generalized coordinates, there will be two differential equa-

tions and two natural frequencies (denoted ω1 and ω2).
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5.3.1 Example: Mass-Spring System

In this example, the system consists of two masses (m1 and m2) connected by springs

with constants k1, k2, and k, as shown in the diagram.

Equations of Motion

To derive the equations of motion, we apply Newton’s second law directly:

1. For Mass m1:

The forces acting on m1 include the force from the spring k1 (connected to a fixed

point), the force from the spring k (connected to m2), and any external force Fext.

Figure 5.6: Mass-springs

The equation of motion for m1 is:

m1ẍ1 = Fext − (k1x1)− k(x1 − x2)

2. For Mass m2:

Similarly, the forces acting on m2 include the force from the spring k2 (connected

to a fixed point), the force from the spring k (connected to m1), and any external

force Fext.

The equation of motion for m2 is:

m2ẍ2 = Fext − (k2x2) + k(x1 − x2)
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System of Equations

The system of equations that describe the motion of the masses is as follows:

1. For m1:

m1ẍ1 + (k1 + k)x1 − kx2 = 0

2. For m2:

m2ẍ2 + (k2 + k)x2 − kx1 = 0

These coupled differential equations can be solved to find the natural frequencies

ω1 and ω2 and the mode shapes of the system.

This analysis provides insights into the behavior of coupled oscillators, showing

how the masses interact through the springs and how energy transfers between them

in a coupled system.

1. Applying Newton’s Second Law (PFD) Directly: - For mass m1:∑
Fext = m1ẍ1

- For mass m2: ∑
Fext = m2ẍ2

2. Breaking Down the Forces Acting on Each Mass: - For m1:

Fk1 + Fk = m1ẍ1

where Fk1 is the force from spring k1, and Fk is the force from the coupling

spring k that connects m1 to m2. - For m2:

Fk2 + Fk = m2ẍ2
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where Fk2 is the force from spring k2, and Fk is the force from the coupling

spring k.

3. Writing the Force Equations in Terms of Displacements: - Force on m1 from

springs:

−k1x1 + k(x2 − x1) = m1ẍ1

- Force on m2 from springs:

−k2x2 + k(x1 − x2) = m2ẍ2

4. Simplifying the Equations: - Rearrange the equations to group terms with x1

and x2:

−(k + k1)x1 + kx2 = m1ẍ1

−(k + k2)x2 + kx1 = m2ẍ2

5. Final Form of the Coupled Differential Equations:

- For m1:

m1ẍ1 + (k + k1)x1 − kx2 = 0

- For m2:

m2ẍ2 + (k + k2)x2 − kx1 = 0

These two equations represent the coupled differential equations of motion for the

two masses in the system. Solving these equations allows us to determine the natural

frequencies and mode shapes of the system, which describe how the masses oscillate

together under the influence The image shows the system of equations for coupled

oscillators, where we treat the oscillators as decoupled for simplification. Here’s a

step-by-step translation and explanation of each part:

Equations of Motion

1. Starting System of Coupled Equations (V-1):** - The system of equations describes

the motion of two masses, m1 and m2, connected by springs with constants k1, k2,
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and a coupling spring k:

ẍ1 +
k + k1
m1

x1 −
k

m1

x2 = 0

ẍ2 +
k + k2
m2

x2 −
k

m2

x1 = 0

Decoupling the Oscillators

2. Using the Concept of Decoupled Oscillators: - To simplify, we consider each

oscillator individually by fixing one mass at a time.

- Step 1: Fix m2** (assuming m2 does not move): - The natural frequency

(pulsation) for the decoupled oscillator with m1 free to move is:

ω01 =

√
k + k1
m1

- Step 2: Fix m1** (assuming m1 does not move):

- The natural frequency for the decoupled oscillator with m2 free to move is:

ω02 =

√
k + k2
m2

Defining Natural Frequencies for Decoupled Oscillators

3. Defining the Natural Frequencies: - For oscillator m1:

ω2
01 =

k + k1
m1

- For oscillator m2:

ω2
02 =

k + k2
m2

4. Substituting into the System:

- The system of differential equations can now be rewritten in terms of the decoupled
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natural frequencies: {
ẍ1 + ω2

01x1 − k
m1
x2 = 0

ẍ2 + ω2
02x2 − k

m2
x1 = 0

(V − 1) (5.1)

These equations describe the motion of each mass in terms of the modified (de-

coupled) natural frequencies, which simplifies further analysis.

5.4 Deriving the Equations of Motion using the

Lagrange Method

We start by calculating the kinetic and potential energies for a system comprising

two masses.

1. Kinetic Energy (T ): The kinetic energy of the system is given by:

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2

where: - m1 and m2 are the masses, - ẋ1 and ẋ2 are the velocities of each mass.

2. Potential Energy (U): The potential energy of the system includes contributions

from the springs connected to each mass and the coupling spring between the

masses:

U =
1

2
k1x

2
1 +

1

2
k2x

2
2 +

1

2
k(x2 − x1)

2

where: - k1 and k2 are the spring constants of the individual springs, - k is the

spring constant of the coupling spring.

Lagrangian (L):

The Lagrangian L is the difference between the kinetic and potential energies:

L = T − U
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Applying Lagrange’s Equations:

The equations of motion are derived by applying Lagrange’s equations for each coor-

dinate x1 and x2:
d

dt

(
∂L

∂ẋ1

)
− ∂L

∂x1
= 0

d

dt

(
∂L

∂ẋ2

)
− ∂L

∂x2
= 0

These equations allow us to describe the motion of each mass in terms of the

system’s kinetic and potential energies. Solving these differential equations will yield

the motion of each mass as functions of time.

5.5 Finding the Natural Frequencies Using the Ma-

trix Method

To find the natural frequencies (eigenfrequencies) of the system, we start by revisiting

the equations (V.1) and looking for solutions of the form:

x1 = A1 cos(ωt+ φ1), A1 > 0

x2 = A2 cos(ωt+ φ2), A2 > 0

In complex notation, these can be represented as:

x̄1 = A1e
i(ωt−φ1)

x̄2 = A2e
i(ωt−φ2)

Substituting these expressions into system (V-1) gives:
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{
(ω2

01 − ω2) x̄1 − k
m2
x̄2 = 0

− k
m1
x̄1 + (ω2

02 − ω2) x̄2 = 0
(V − 2) (5.2)

These equations, now represented in matrix form as equation (V-2), allow us to solve

for the eigenfrequencies of the system by setting the determinant to zero, leading to

a characteristic equation. Solving this equation will yield the natural frequencies at

which the system oscillates.

The homogeneous system admits non-zero solutions if, and only if, the determi-

nant in equation (V.3) is zero. This gives:

∣∣∣∣∣ω2
01 − ω2 − k

m2

− k
m1

ω2
02 − ω2

∣∣∣∣∣ = 0 (V − 3) (5.3)

Expanding this determinant results in:

(ω2
01 − ω2)(ω2

02 − ω2)− k2

m1m2

= 0

This can be written as:

(ω2
01 − ω2)(ω2

02 − ω2) =
k2

m1m2

Further expanding this equation leads to a quartic (fourth-order) equation in ω:

ω4 − (ω2
01 + ω2

02)ω
2 + ω2

01ω
2
02 −

k2

m1m2

= 0 (V − 4) (5.4)

This is denoted as equation (V-4).

The discriminant ∆ of the quadratic equation in ω2 is given by:

∆ = (ω2
01 + ω2

02)
2 − 4

(
ω2
01ω

2
02 −

k2

m1m2

)
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Solving this equation for ω will provide the two natural frequencies of the coupled

system, allowing us to understand the oscillatory modes of the system.

The discriminant ∆ of the quadratic equation in ω2 is given by:

∆ = (ω2
01 + ω2

02)
2 − 4

(
ω2
01ω

2
02 −

k2

m1m2

)

Expanding this further:

∆ = (ω2
01 + ω2

02)
2 +

k2

m1m2

Or in terms of the spring constants and masses:

∆ =

(
k + k1
m1

+
k + k2
m2

)2

+
4k2

m1m2

Since the determinant ∆ is positive, we find that both solutions for the frequencies

ω2
1 and ω2

2 are real and positive, given by:

ω2
1 =

ω2
01 + ω2

02 −
√
∆

2

ω2
2 =

ω2
01 + ω2

02 +
√
∆

2

These values represent the natural frequencies of the system. The polynomial

f(x) can be written as:

f(x) = x2 − (ω2
01 + ω2

02)x+ ω2
01ω

2
02 −

k2

m1m2

Assuming ω01 < ω02, this results in two distinct solutions, which are the natural

frequencies of the coupled oscillatory system. The polynomial f(x) can be expressed

as:
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f(x) = (x2 − ω2
1)(x

2 − ω2
2)

We observe that:

f(ω2
01) = f(ω2

02) = − k2

m1m2

< 0

From this, we deduce that:

ω2 < ω01 < ω02 < ω1

Assuming ω01 < ω02, we establish the relationship between the natural frequencies

of the system, highlighting the range in which each frequency lies relative to the

system’s parameters.

5.6 Finding the Eigenmodes x1 and x2

By replacing x1 and x2 with their complex expressions:

x1 = A1e
iφ1eiωt and x2 = A2e

iφ2eiωt

In the system (V-2), we obtain for the first equation:

(ω2
01 − ω2)kx1e

iφ1 − k

m1

x2e
iφ2 = 0

So:

ei(φ1−φ2) =
m1(ω

2
01 − ω2)

k
x1
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Since this quantity is real, we conclude that this condition constrains the relative

amplitudes and phases of x1 and x2, providing the solution for the normal modes of the

coupled oscillator system. The equation presented here is focused on finding the phase

difference between φ1 and φ2 for two coupled oscillators. Here’s the interpretation of

each case:

1. When sin(φ1 − φ2) = 0:

This implies that φ1 − φ2 = ±π or 0, leading to two possible cases:

1. Case 1: ω = ω1:

(a) For this situation, we have ω2
01 − ω2 < 0.

(b) Therefore, cos(φ1 − φ2) = −1, implying φ1 − φ2 = π.

(c) This result means that the two masses oscillate in opposite phase.

(d) The amplitude relation between x1 and x2 becomes:

x2(ω)

x1(ω)
=
m1(ω

2
01 − ω2)

k

2. Case 2: ω = ω2:

(a) In this case, ω2
02 − ω2 > 0.

(b) Here, cos(φ1 − φ2) = 1, giving φ1 − φ2 = 0.

(c) This result means that the two masses oscillate in phase.

(d) The amplitude relation in this case is:

x2(ω)

x1(ω)
=
m1(ω

2
02 − ω2)

k

In summary:

- When ω = ω1, the oscillators vibrate in opposite phase.

- When ω = ω2, the oscillators vibrate in phase.
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These two modes correspond to the two natural frequencies of the system, repre-

senting the fundamental modes of vibration for the coupled oscillators.

In this analysis of coupled oscillators, we see two specific configurations of vibration

modes, describing how the masses m1 and m2 oscillate with respect to each other.

The following describes each case:

1. Vibrations in Opposite Phase:

(a) When the natural frequency of oscillation is ω = ω1, the two masses vibrate

in opposite phase. This means that as x1 reaches a peak in one direction,

x2 reaches a peak in the opposite direction.

(b) The phase relationship for this mode is φ1 − φ2 = π.

(c) The amplitude relation between the displacements x1 and x2 is given by:

x2(ω)

x1(ω)
=
m1(ω

2
01 − ω2)

k

(d) For this mode, we have:

x1 = A1(ω1) cos(ω1t+ φ1)

x2 = −A1(ω1) cos(ω1t+ φ1)

2. Vibrations in Phase:

(a) - For the natural frequency ω = ω2, the two masses vibrate in phase,

meaning x1 and x2 move in the same direction simultaneously.

(b) The phase difference here is φ1 − φ2 = 0.

(c) In this case, the amplitude relation is:

x2(ω)

x1(ω)
= λ1 =

m1(ω
2
1 − ω2)

k

These two cases represent the fundamental vibration modes of the system. The

first mode corresponds to opposite-phase vibrations, while the second corresponds to
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in-phase vibrations, each with its characteristic frequency and amplitude relation.

For the mode with frequency ω = ω2, the two masses x1 and x2 oscillate in phase,

meaning they move together in the same direction.

1. 1. Equations of Motion in Phase: - The positions of x1 and x2 are given by:

x1 = A1(ω2) cos(ω2t+ φ2)

x2 = A2(ω2) cos(ω2t+ φ2)

- This relationship can also be expressed as:

x2 = λ2A2 cos(ω2t+ φ2)

- Where λ2 =
m1(ω2

1−ω2
2)

k
.

2. General Solution: - The complete solution that combines both vibration modes

(mode 1 and mode 2) is written as:[
x1(t)

x2(t)

]
= a1

[
x1(ω1, t)

x2(ω1, t)

]
+ a2

[
x1(ω2, t)

x2(ω2, t)

]

- Here, a1 and a2 are coefficients that define the amplitudes of each mode, and

the expressions x1(ω1, t), x2(ω1, t) and x1(ω2, t), x2(ω2, t) represent the motions

of the system in each mode.

This general solution allows the system to be expressed as a combination of the

two fundamental vibration modes, providing the real motion of the coupled oscillator

system. The coefficients a1 and a2 will be determined by the initial conditions of the

system. Here is the translation of the provided equations:

x1(t) = a1A1(ω1) cos(ω1t+ φ1) + a2A1(ω2) cos(ω2t+ φ2)

x2(t) = −a1A2(ω1) cos(ω1t+ φ1) + a2A2(ω2) cos(ω2t+ φ2)

with

A2(ω1) = λ1A2(ω1)
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and

A2(ω2) = λ2A2(ω2)

We obtain the system for the two modes given by (V.4)**

x1(t) = a1A1(ω1) cos(ω1t+ φ1) + a2A1(ω2) cos(ω2t+ φ2)

x2(t) = −λ1a1A1(ω1) cos(ω1t+ φ1) + λ1a2A1(ω2) cos(ω2t+ φ2)

where

a1A1(ω1) = a1

and

a2A1(ω2) = a2

The four values a1, a2, φ1, φ2 are determined by four initial conditions on x1, x2, ẋ1, ẋ2.**

¿ For example, we take the conditions:

x1(t = 0) = 0, x2(t = 0) = 0, ẋ1(t = 0) = 0, ẋ2(t = 2) = 0

From these conditions, we get:

1.

a1 cosφ1 + a2 cosφ2 = 0

2.

−λ1a1 cosφ1 + λ2a2 cosφ2 = 0

3.

λ1a1 sinφ1 + λ2a2 sinφ2 = 0

4.

sin(φ1 − φ2) = 0
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We deduce that:

a1 + a2 = 0

And:

−λ1a1 + λ2a2 = 0

a1 =
λ2

λ1 + λ2
a

a1 =
ω2
1 − ω2

2

ω2
1 − ω2

2

a

a2 =
λ1

λ1 + λ2
a

This section solves for the coefficients a1 and a2 by setting up and solving a system

of equations based on the initial conditions and parameters given.

The expression for a2 is as follows:

a2 =
ω2
1 − ω2

01

ω2
1 − ω2

2

a

This represents the solution for the coefficient a2 in terms of the frequencies ω1,

ω01, and ω2, as well as a given constant a.
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5.7 Finding the Natural Frequencies and eigen-

modes Using the Method of Normal Coordi-

nates

5.7.1 Finding the Natural Frequencies of Eigenmodes

We revisit the two-mass, three-spring system. To apply the method of normal coor-

dinates, we assume:

m1 = m2 = m and k1 = k2

The differential equations of motion derived previously are rewritten as:

mẍ1 = −k1x1 + k(x2 − x1)

mẍ2 = −k2x2 − k(x2 − x1)

Which simplify to:{
mẍ1 + (k1 + k)x1 − kx2 = 0

mẍ2 + (k2 + k)x2 − kx1 = 0
(V − 4)

This setup provides the foundation for analyzing the system’s natural frequencies and

corresponding eigenmodes using normal coordinates.

By subtracting and adding the two equations above, we obtain:

m(ẍ1 − ẍ2) + (k1 + 2k)(x1 − x2) = 0

m(ẍ1 + ẍ2) + k1(x1 + x2) = 0

These are labeled as equations (V-4).
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We define new variables as follows:

X1 = x1 − x2

Ẋ1 = ẋ1 − ẋ2

X2 = x1 + x2

Ẋ2 = ẋ1 + ẋ2

The variables X1 and X2 are known as the normal coordinates of the system.

Substituting these into the equations from system (V-3), we derive the new system

(V-4):

{
mẌ1 + (k1 + 2k)X1 = 0

mẌ2 + k1X2 = 0
(V − 5) (5.5)

These are labeled as equations (V-5).

The equations of system (V-5) are decoupled, meaning that they represent two

independent simple harmonic motions. This reformulation using normal coordinates

X1 and X2 simplifies the problem by breaking it down into two separate harmonic

oscillations, each with its natural frequency determined by the parameters m, k, and

k1. Let the solutions of the system (V-5) be:

X1(t) = A1 sin(ω1t+ φ1) with ω1 =

√
k1 + 2k

m

X2(t) = A2 sin(ω2t+ φ2) with ω2 =

√
k1
m

Therefore:

x1 =
X1 +X2

2
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and

x2 =
X1 −X2

2

Thus:

x1(t) =
A1 sin(ω1t+φ1)+A2 sin(ω2t+φ2)

2

x2(t) =
A1 sin(ω1t+φ1)−A2 sin(ω2t+φ2)

2

(V − 6) (5.6)

Regarding the order of natural frequencies, we can also list them in increasing or

decreasing order (for systems with 2 degrees of freedom).

5.7.2 Superposition of Vibrations with Different Frequencies

In this section, the concept of *superposition of vibrations* is explained. Since har-

monic oscillators follow linear equations, multiple harmonic oscillations can occur

together without affecting each other. This allows us to analyze each oscillation

separately and then combine their displacements to get the overall motion. When

oscillations with slightly different frequencies are combined, they can create a *beat-

ing effect*, where the amplitude of the resulting wave fluctuates periodically. If the

system is simultaneously subjected to several different oscillations, we can solve the

equations corresponding to each oscillation separately. The displacement of the os-

cillator is then obtained by adding the displacement solutions of each equation. This

results in the superposition of vibrations with the same frequency or with different,

yet close, frequencies. In the case of different but close frequencies, as treated in

(V-6), we encounter the phenomenon of beating.
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Beating

A beating effect occurs when two vibrations with nearly identical frequencies are

superimposed. This results in a new vibration with an average frequency ω1+ω2

2
,

whose amplitude varies periodically with the frequency ω1−ω2

2
.

In this case, the displacement x1 given by the system (equation V-6) is considered.

The values A1, A2, φ1, and φ2 are determined by initial conditions. Here, it’s assumed

that A1 = A2 = A and φ1 = φ2 = 0.

The resulting displacement becomes:

x1 =
A

2
(sinω1t+ sinω2t)

This expression represents the phenomenon of beats, where the amplitude oscil-

lates at the beat frequency due to the interference between the two close frequencies.

The expression for x1 can be rewritten by applying the trigonometric identity:

sin a+ sin b = 2 cos

(
a− b

2

)
sin

(
a+ b

2

)

Thus,

x1(t) =
A

2
sinω1t+

A

2
sinω2t = x1(t) + x2(t)

Using the identity, we get:

x1(t) = A cos

(
ω1 − ω2

2
t

)
sin

(
ω1 + ω2

2
t

)

This form shows the phenomenon of beating, where A cos
(
ω1−ω2

2
t
)
represents

the slowly varying amplitude, and sin
(
ω1+ω2

2
t
)
represents the fast oscillation at the

average frequency.
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Mean Period and Beat Period

The mean period corresponds to the average frequency ω1+ω2

2
, while the beat period is

associated with the difference frequency ω1−ω2

2
, giving the rate at which the amplitude

oscillates. The following parameters are defined:

1. Mean Frequency ωmoyenne:

ωmoyenne =
ω1 + ω2

2

2. Mean Period Tmoyenne:

Tmoyenne =
2π

ωmoyenne

=
2π

ω1+ω2

2

where:

T1 =
2π

ω1

, T2 =
2π

ω2

3. Modulation Frequency ωmodulation:

ωmodulation =
ω1 − ω2

2

4. Beat Period Tb:

The time interval between two consecutive zero crossings of the amplitude of

the beats (represented by Tb) is given by:

Tb =
2π

ωmodulation

=
2π

ω1−ω2

2

The beat period Tb is given by the formula:

Tb =
2π

ωmodulation

Alternatively, it can be expressed in terms of the individual periods T1 and T2 of

the two oscillations as:
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Tb =
T1T2

|T1 − T2|

The figure (V-6) illustrates the superposition of two vibratory motions with close

frequencies.

Figure 5.7: Representation of vibratory movement

Figure 5.8: Representation of vibratory movement
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Figure 5.9: Beating of the two oscillations x3(t) and x4(t)

5.8 Forced Oscillations with Degrees of Freedom

5.8.1 Forced Oscillations without Damping

We consider the system (two masses, three springs) shown in Figure (V.7). The

Figure 5.10: Elastically coupled mechanical oscillators are subjected to an exter-
nal force

differential equations of motion are:

m1ẍ1 + (k1 + k)x1 − kx2 = F0 cosΩt

m2ẍ2 + (k2 + k)x2 + kx1 = 0

We are interested in the steady-state regime, meaning the solution that follows

the particular solution of the system of differential equations. We seek sinusoidal

solutions with angular frequency Ω. To do this, we use the expressions for the natural

frequencies of the decoupled oscillators, defined by: The natural frequencies for the

decoupled oscillators are defined as:
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ω2
01 =

k + k1
m1

and

ω2
02 =

k + k2
m2

Using these, we obtain the following system of differential equations:

ẍ1 + ω2
01x1 − k

m1
x2 =

F0

m1
cosΩt

ẍ2 + ω2
02x2 − k

m2
x1 = 0

If we use the complex notation, we replace x1, x2, and the external force with

their complex expressions:

Ā1 = A1e
iφ1eiΩt = A1e

iΩt

Ā2 = A2e
iφ2eiΩt = A2e

iΩt

This complex notation simplifies the analysis of the system. With the complex

amplitudes defined as:

Ā1 = A1e
iφ1 and Ā2 = A2e

iφ2

we also define the external force as:

F̄0 = F0e
iΩt

The system of equations becomes:
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(ω2
01 − Ω2)Ā1 − k

m1
Ā2 =

F0

m1

− k
m2
Ā1 + (ω2

02 − Ω2)Ā2 = 0
(V − 7) (5.7)

For the system (V-7) to admit solutions, the determinant must be non-zero:

∆ =

∣∣∣∣∣ω2
01 − Ω2 − k

m1

− k
m2

ω2
02 − Ω2

∣∣∣∣∣ ̸= 0 (V − 8) (5.8)

The solutions for the system (V-8) are:

Ā1 =
F0

m1(ω02 − Ω2)

and the complex solution involving cosine and sine is expressed as:

Ā1 = A1 cosΩt+ iA1 sinφ1

Ā1 =

∣∣∣∣∣ F0

m1
− k

m1

0 ω2
02 − Ω2

∣∣∣∣∣ = A1 cosφ1 + iA1 sinφ1 (V − 9) (5.9)

These expressions give us the complex amplitudes for the forced oscillation system.

The expression for Ā2 in the forced oscillation system is given by:

Ā2 =

∣∣∣∣∣ω2
01 − Ω2 F0

m1

− k
m2

0

∣∣∣∣∣ = A2 cosφ2 + iA2 sinφ2 (V − 10) (5.10)

In this example, the expressions found for Ā1 and Ā2 are purely real quantities.

This implies that the resulting oscillatory motion, described by these amplitudes, does

not involve any imaginary components, indicating that the solution is aligned with

real physical displacements. The imaginary parts of expressions (V.9) and (V.10)

must be zero. Since Ā1 and Ā2 are necessarily non-zero, we derive the following

conditions:
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sinφ1 = 0

Thus:

φ1 = 0 or π

And similarly:

φ2 = 0 or π

This ensures that the phases φ1 and φ2 are restricted to values that eliminate

any imaginary components, preserving the real nature of the oscillatory solution. -

The movement of the mass in question is either in phase or in opposite phase with

the external force.

- If we set both phase shifts to zero, the displacements take the following forms:

x1(t) =
F0(ω

2
02 − Ω2)

m1∆
cosΩt = A1 cosΩt

and

x2(t) =
−F0k

m1m2∆
cosΩt = A2 cosΩt

This gives the displacement expressions x1(t) and x2(t) in terms of cosine func-

tions, reflecting oscillations with amplitude factors A1 and A2. The main discriminant

∆ becomes zero for pulse values given by the square root of the expressions in (V-9)

and (V-10). The amplitudes A1 and A2 tend toward infinity at this point, represent-

ing resonance for an external pulse equal to ω02. At this resonance, oscillator m1 is

stationary, and A1 =
F0

k
, indicating an anti-resonance phenomenon.
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Oscillator 2 (right) vibrates sinusoidally at its natural frequency and exerts a

force on oscillator 1 (left) through the coupling spring. This coupling force is always

equal and opposite to the external force applied to oscillator 1. The variations in

amplitudes A1 and A2 are plotted as a function of the pulse of oscillator 1.

Figure 5.11: Variation of Amplitudes A1 and A2 as a Function of the Pulse

Damped Forced Oscillation

Consider the system below:

- An external force F⃗ext = F0 cosΩt is applied to mass m1. - The system consists

of two masses, m1 and m2, connected by springs with spring constants k1, k2, and k.

- Each mass has its own damping coefficient, α1 for m1 and α2 for m2.

Figure 5.12: Mechanical oscillators by elasticity and subjected to an external
force and a damper

Figure 5-12 shows mechanical oscillators connected by springs and subject to an

external force and damping.
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The differential equations of motion for the system are:

m1ẍ1 + (k1 + k)x1 + α1ẋ1 − kx2 = F0 cosΩt

m2ẍ2 + (k2 + k)x2 + α2ẋ2 − kx1 = 0
(V − 11) (5.11)

These equations describe the motion of each mass under the influence of elastic

(spring) forces, damping, and the external periodic force applied to m1.

Resonance and Anti-resonance

(With D = 0 and F ̸= 0: Forced but undamped system)

The steady-state solution from (V-10) is:

x1 = A1 cos(Ωt+ φ1)

x2 = A2 cos(Ωt+ φ2)

This represents the displacement of each mass in the system under forced oscilla-

tion at a frequency Ω, where each mass has its own amplitude A1, A2 and phase φ1,

φ2. In this context, resonance and anti-resonance behavior can be observed depend-

ing on the relationship between the driving frequency Ω and the natural frequencies

of the system. Where:

A1, A2, φ1, and φ2 depend on the frequency Ω and the force amplitude F0. To

find A1 and A2, we use the complex representation.


F (t) = F0 cos(Ωt) → F̄ (t) = F0e

−iΩt

x1(t) = A1 cos(Ωt+ φ1) → x̄1(t) = A1e
−iΩt

x2(t) = A2 cos(Ωt+ φ2) → x̄2(t) = A2e
−iΩt
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This complex form simplifies the analysis of the forced oscillation by allowing us

to work with complex exponentials instead of trigonometric functions. The system of

equations (V-10) becomes:

When ∆ = 0:

m1x̄1 + (k1 + k)x̄1 + a1x̄1 − kx2 = F0e
−iΩt

m2x̄2 + (k2 + k)x̄2 + a2x̄2 − kx1 = 0

Which simplifies to the following system (V-12):


(
−Ω2 + k1+k

m1

)
Ā1 − k

m1
Ā2 =

F0

m1(
−Ω2 + k2+k

m2

)
Ā2 − k

m2
Ā1 = 0

(V − 12) (5.12)

This system can now be solved for the complex amplitudes A1 and A2, represent-

ing the solutions for each mass in the forced oscillation system. In the case where

m1 = m2 = m and k1 = k2 = k:

Setting ω2
0 = k

m
, equation (V-12) becomes:

(−Ω2 + 2ω2
0)Ā1 − ω2

0Ā2 =
F0

m

(−Ω2 + 2ω2
0)Ā2 − ω2

0Ā1 = 0

This leads to the following expressions for A1 and A2:

A1 =
F0

m

|2ω2
0−Ω2|

|(2ω2
0−Ω2)2−ω4

0 |

A2 =
F0

m
|ω0|

|(2ω2
0−Ω2)2−ω4

0 |

(V − 13) (5.13)

From this (equation V-13), we observe:

- A1 = A2 = ∞, when Ω = ω0 = ΩR1 (referred to as the first resonance frequency).

- Ω =
√
3ω0 = ΩR2 (referred to as the second resonance frequency). - A1 = 0, when

Ω =
√
2ω0 = ΩR1 (referred to as the anti-resonance frequency). Anti-resonance is
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a phenomenon that occurs in certain coupled oscillating systems, where one part

of the system remains nearly stationary while another part experiences a significant

oscillation, despite being driven by an external force. In simpler terms, at the anti-

resonance frequency, one of the oscillators remains almost completely unaffected by

the driving force, effectively ”canceling out” the oscillatory effect on that particular

part of the system.

Key Aspects of Anti-Resonance:

1. Frequency Dependence: - In coupled systems, anti-resonance occurs at a specific

frequency, known as the **anti-resonance frequency** ΩAR, which is distinct from the

resonance frequencies where both oscillators would normally respond strongly. - The

anti-resonance frequency depends on the coupling properties of the system, including

parameters like the masses, stiffness (spring constants), and damping (if any).

2. Destructive Interference: - At the anti-resonance frequency, the motion induced

by the external force on one part of the system interferes destructively with the

natural oscillations of the other part. - This destructive interference causes one of the

oscillators to have zero or minimal amplitude, meaning it effectively does not respond

to the driving force. - In practical terms, the oscillatory energy is redistributed such

that one part ”absorbs” the motion, leaving the other almost motionless.

3. Energy Flow and Isolation: - In anti-resonance, energy from the external driv-

ing force is not effectively transferred to the oscillating mode that includes the ”silent”

or ”stationary” part. - This isolation of motion at the anti-resonance frequency is

used in engineering applications to reduce vibrations in specific parts of a system

while allowing other parts to oscillate.

4. Contrast with Resonance: - In resonance, the system absorbs energy very

effectively at specific frequencies, leading to large amplitudes of oscillation. - In

anti-resonance, the system behaves oppositely: it avoids absorbing energy in certain

oscillating modes, resulting in minimal oscillation in one part of the system despite

the presence of a driving force.
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Mathematical Explanation (Based on Coupled Oscillators)

For a system of two coupled oscillators with masses m1 and m2 and spring constants

k1, k2, and coupling k:

1. Equations of Motion: - The system’s response to an external driving force

F (t) = F0 cos(Ωt) applied to one of the masses can be described by differential equa-

tions that include terms for the coupling between the masses.

2. Anti-Resonance Condition: - Solving the equations of motion reveals fre-

quencies where one oscillator’s amplitude A1 goes to zero. This occurs at the anti-

resonance frequency ΩAR. - Mathematically, the condition for anti-resonance is when

the response amplitude A1 or A2 satisfies A1 = 0 or A2 = 0, leading to minimal

oscillation in one part of the system.

3. Example Calculation: - For identical masses and springs in a symmetric system,

the anti-resonance frequency ΩAR might be calculated as ΩAR =
√
2ω0, where ω0 is

the natural frequency of one of the oscillators if it were isolated. This depends on the

specific coupling configuration.

Practical Implications of Anti-Resonance:

Anti-resonance is useful in designing systems where vibration needs to be minimized

in a specific component while allowing another part to respond to external forces.

Examples include:

- Mechanical Systems: Reducing vibrations in sensitive parts of machinery, such

as in precision instruments, where you want to isolate certain components from vi-

brations. - Structural Engineering: Designing buildings or bridges with tuned mass

dampers that reduce oscillations in certain parts by exploiting anti-resonance. -

Acoustic Engineering: In loudspeakers, where anti-resonance can prevent certain fre-

quencies from causing unwanted resonance in parts of the speaker housing.
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In summary, anti-resonance is a phenomenon in coupled oscillators where, at a

particular frequency, one part of the system remains nearly stationary due to de-

structive interference in the oscillatory response. This concept is used in various

applications to isolate parts of a system from vibrations and oscillations at specific

frequencies.
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