Evaluation

Exercise 01

- A light is monochromatic if it contains only one radiation of a given wavelength λ. True □ False □
- 2. The absorbance of a sample, denoted as A, is a dimensionless quantity. True \Box False \Box
- The color of a solution is the complementary color of the radiations absorbed by the solution.
 True □ False □
- In an IR spectrum, the strong absorption band located between 3200 cm⁻¹ and 3400 cm⁻¹ is due to the C-O bond.

True 🗆 False 🗆

Exercise 02

Choose the correct answer(s) in each case:

- 1. The wavelength range of visible light is:
 - a. 40–80 µm
 - b. 400–800 µm
 - c. 400–800 nm
- 2. The wavelengths in the infrared range are:
 - a. Greater than those of visible light
 - b. Smaller than those of visible light
- 3. A yellow-colored solution:
 - a. Absorbs green light radiations
 - b. Absorbs red light radiations
 - c. Absorbs violet light radiations

- 4. A colorless liquid:
 - a. Absorbs all the radiations of white light
 - b. Does not absorb in the visible range
 - c. Does not absorb any radiation
- 5. The wavenumber is:
 - a. The opposite of the wavelength
 - b. The inverse of the wavelength
 - c. A quantity expressed in $\rm cm^{-1}$
- 6. A strong absorption between 1650 and 1800 $\rm cm^{-1}$ identifies:
 - a. An O-H bond
 - b. A C=O bond

Exercise 03

We are provided with the infrared spectrum of an oxygenated organic compound, denoted as B, with the molecular formula $C_4H_{10}O$.

- 1. Using the molecular formula, show that this compound **B** cannot be a carboxylic acid or an ester.
- 2. Using the spectrum, show that **B** cannot contain a carbonyl group.
- 3. Knowing that **B** is a linear molecule, determine the structural formulas of the two possible isomers for **B**.

Exercise 04

Monitoring a Reaction via Spectrophotometry

We are interested in the reaction of cupric ions Cu^{2+} in an aqueous basic solution (with controlled pH) with an anionic species called EDTA, denoted as Y^{4-} .

The reaction equation is as follows:

$$Cu^{+2} + Y^{-4} \rightarrow CuY^{-2}$$

Below are the absorption spectra of:

A solution of $Cu^{2+}(aq)$ and $SO_4^{-2}(aq)$ (pink curve). A solution of $CuY^{2-}(aq)$ and $SO_4^{-2}(aq)$ (blue curve).

The spectra were obtained using solutions with a concentration $C_0 = 5.0 \times 10^{-2} \text{ mol/L}$, in cuvettes with a path length l = 1.0 cm. Only Cu^{2+} and CuY^{2-} are colored.

- 1- Determine the wavelength corresponding to the maximum absorption λ_m . What is the corresponding color?
- 2- What is the color of the solution?
- 3- Determine the maximum absorbance A_{max} . Deduce the molar absorption coefficient of Cu^{2+} , denoted ϵ_{Cu} , at the wavelength λ_m .
- 4- What is the absorbance of the CuY²⁻ solution at the previously determined λ_m ?
- 5- Deduce the molar absorption coefficient of CuY^{2-} , denoted ϵ_Y , at the wavelength λ_m .

Exercise 5

Thin Layer Chromatography Analysis of Lavender Essential Oil

The thin-layer chromatogram shown was obtained with the following samples:

A: Lavender essential oil

B: Linalool

C: Linalyl acetate

Based on the chromatogram:

- 1- Which are pure substances and which are mixtures?
- 2- Which molecules can be identified in lavender essential oil?

Exercise 6

Infrared Spectrum Analysis of an Organic Compound

An infrared spectrum is provided for an organic compound containing carbon, hydrogen, and oxygen, with the molecular formula $C_7H_6O_2$.

- 1- Calculate the degree of unsaturation.
- 2- Interpret the IR spectrum.
- 3- Determine the structural formula (topological representation) of the compound.

