
Chaotic Systems: A Comprehensive Study with
Examples and Applications

Chapter 3: Chaotic Systems
The study of chaotic systems began in the early 20th century with Henri Poincaré, who
introduced qualitative approaches for analyzing dynamical systems. Poincaré’s insights
into equilibrium points, periodic trajectories, and basins of attraction laid the foundation
for chaos theory. His work foreshadowed the complex and unpredictable nature (sen-
sitivity to initial conditions) of certain dynamical systems that may appear simple in
form.

Later, in the 1960s, Edward Lorenz presented a simplified system of three differ-
ential equations to describe the evolution of air masses, which was the first system to
demonstrate chaotic behavior. This marked the beginning of modern chaos theory.

1 Properties and Definitions of Chaos
Chaos is a phenomenon that challenges traditional methods of classification and iden-
tification. While the term ”chaos” is often used in a variety of contexts, the rigorous
definition of chaos in mathematical terms was formalized by Li and Yorke in 1975, who
provided a criterion for identifying chaos in one-dimensional difference equations.

Definition 3.1.1 (Li-Yorke Chaos)
A continuous map f : I → I, where I is the unit interval (I = [0, 1]), is chaotic in the
sense of Li-Yorke if there exists an uncountable set S ⊂ I such that for any two distinct
points x, y ∈ S, the following conditions hold:

lim inf
n→+∞

d(fn(x), fn(y)) = 0, and lim sup
n→+∞

d(fn(x), fn(y)) > 0.

Definition 3.1.2 (Devaney Chaos - 1989)
A continuous map f : V → V is chaotic on V if it satisfies the following three conditions:

1. Topological Transitivity: For any pair of non-empty open sets U,W ⊂ V , there
exists a positive integer k such that fk(U) ∩W ̸= ∅.

2. Density of Periodic Points: The periodic points of f are dense in V .
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3. Sensitive Dependence on Initial Conditions: There exists a positive constant
δ such that for every point x ∈ V and every neighborhood of x, there exists another
point y and an integer n ≥ 0 such that |fn(x)− fn(y)| > δ.

These definitions highlight that chaotic systems are deterministic rather than random.
Despite their apparent unpredictability, chaotic systems follow precise mathematical laws
that govern their behavior.

1. Nonlinearity

In contrast to linear systems, which exhibit predictable and proportional effects, nonlinear
systems behave in ways that defy simple predictions. As one attempts to decompose
or analyze nonlinear systems, their internal complexity is revealed, often resulting in
behavior that appears random.

2. Fractal Structure

A defining characteristic of chaotic systems is their fractal nature. These systems exhibit
self-similarity across multiple scales, meaning that as one zooms in, more details emerge
that resemble the larger-scale behavior. This self-similarity results in chaotic systems oc-
cupying a fractional dimension, rather than fitting neatly into integer-dimensional spaces
like curves or surfaces.

Figure 1: Fractal Structure: (a) Koch Snowflake, (b) Sierpinski Triangle, (c) Julia Set
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3. Strange Attractors

Unlike systems with regular fixed-point or periodic attractors, chaotic systems possess
strange attractors. These attractors represent a complex geometric structure that confines
the trajectory of a system within a bounded region, but the system never repeats itself
and never follows a simple path.

2 Scenarios of Transition to Chaos
While the precise conditions that lead to chaos are not always well-defined, there are
several universal pathways through which systems can transition from regular to chaotic
behavior. This transition typically depends on a control parameter. As the control
parameter is varied, the system can progress from a stationary state to a periodic state,
and beyond a certain threshold, it enters a chaotic regime.

1. Intermittency

This scenario is characterized by chaotic bursts appearing irregularly within a regular
oscillation, often referred to as intermittency. The system oscillates between periodic
and chaotic behavior, exhibiting a dramatic, yet somewhat predictable, pattern of erratic
bursts.

Figure 2: Transition to Chaos through Intermittency

2. Period Doubling

This process occurs when bifurcations cause a system’s period to double successively.
As the control parameter is varied, the system’s periodic behavior becomes increasingly
complex, eventually resulting in chaotic behavior. Period doubling is often observed in
systems such as the logistic map.
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Figure 3: Transition to Chaos via Period Doubling

3. Quasi-Periodicity

Chaos can also arise through the interaction of three or more incommensurable frequen-
cies, a phenomenon known as quasi-periodicity. In this case, the system exhibits regular,
yet non-periodic, behavior that leads to chaotic dynamics when the frequencies interact.

3 Lyapunov Exponents
Lyapunov exponents are a critical tool for determining the presence of chaos in a dy-
namical system. They measure the rate at which nearby trajectories in the phase space
diverge or converge. A positive Lyapunov exponent indicates sensitive dependence on
initial conditions, a hallmark of chaotic behavior.

1. One-Dimensional Case
For a one-dimensional system described by the map xn = f(xn−1), consider an initial con-
dition x0 perturbed by a small error ϵ. The divergence between the perturbed trajectory
and the original trajectory after n iterations is given by:

|fn(x0 + ϵ)− fn(x0)| ∼ ϵenλ.

Taking the natural logarithm of both sides:

nλ ∼ ln

∣∣∣∣fn(x0 + ϵ)− fn(x0)

ϵ

∣∣∣∣ .
As ϵ → 0, the Lyapunov exponent is defined as:

λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|.
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2. Case of a Multidimensional Application
For a system in Rm, we generalize the concept of Lyapunov exponents to measure di-
vergence in multiple directions. Given a multidimensional system f : Rm → Rm, the
system has m Lyapunov exponents, each measuring divergence along a particular axis of
the system’s phase space. The evolution of an initial hypervolume V0 is governed by:

V = V0e
(λ1+λ2+···+λm)n,

where λ1, λ2, . . . , λm are the Lyapunov exponents.
Condition for Chaos:

1. At least one λi > 0 to ensure exponential divergence along one axis, indicating
sensitive dependence on initial conditions.

2. The sum of all λi must be negative to ensure the system’s trajectories remain
confined to a low-dimensional attractor, rather than expanding indefinitely.

4 Fractal Dimensions of Strange Attractors
Fractal dimensions provide a way to quantify the complexity of chaotic attractors. These
dimensions describe how intricate and detailed the behavior of a system is within its
phase space. Unlike traditional geometric dimensions, which are integer values (such as
1 for a line or 2 for a surface), fractal dimensions can take non-integer values, reflecting
the self-similar and often highly irregular structure of chaotic attractors.

The study of fractal dimensions in chaotic systems allows us to understand the degree
of complexity of a system’s behavior and provides insights into its underlying dynamics.
In the context of dynamical systems, strange attractors have a fractal nature, mean-
ing their behavior is unpredictable and cannot be described by simple, low-dimensional
models.

Fractal dimensions can be computed using various methods, two of the most com-
monly used being the Mori dimension and the Kaplan-Yorke dimension. Both methods
utilize Lyapunov exponents, which measure the rate of separation of nearby trajectories
in phase space, to quantify the fractal structure of the attractor.

1. Mori Dimension
The Mori dimension is a measure of the fractality of a chaotic attractor. It is calculated
using the Lyapunov exponents of a dynamical system, which provide information on
how the volume in phase space evolves over time. The Mori dimension formula takes
into account the number of zero Lyapunov exponents, positive Lyapunov exponents, and
their mean values.

Let:

• m0 be the number of zero Lyapunov exponents.

• m+ be the number of positive Lyapunov exponents.

• λ+ be the mean of the positive Lyapunov exponents.

• λ− be the mean of the negative Lyapunov exponents.
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The Mori dimension is given by the following formula:

DM = m0 +m+

(
1 +

λ+

|λ−|

)
.

This dimension reflects the geometric complexity of the attractor. The term m0

accounts for the non-productive directions in the phase space (where trajectories do
not spread), while m+ represents the directions in which the system exhibits expansion,
leading to fractal behavior. The ratio λ+

|λ−| adjusts this for systems where contraction and
expansion occur at different rates.

2. Kaplan-Yorke Dimension
The Kaplan-Yorke dimension is another important fractal dimension used to quantify
the complexity of chaotic attractors. Unlike the Mori dimension, which incorporates all
Lyapunov exponents, the Kaplan-Yorke dimension focuses on the sum of the Lyapunov
exponents and their contribution to the overall system’s dimension.

Let j0 be the largest integer such that the sum of the first j0 Lyapunov exponents is
greater than or equal to zero, and the sum of the first j0 + 1 Lyapunov exponents is less
than zero. This gives a threshold for the behavior of the attractor in phase space.

The Kaplan-Yorke dimension is given by:

DKY = j0 +

∑j0
i=1 λi

|λj0+1|
.

Here, j0 is the integer number of positive Lyapunov exponents, and the term
∑j0

i=1 λi

|λj0+1|
adjusts the dimension for systems where the exponents do not sum neatly to a whole
number, reflecting the fractal structure of the attractor.

Example 3.4.2: Dimension of the Attractor (Henon, Lozi, Lorenz,
Rössler)
The following table shows the Kaplan-Yorke dimension for four well-known chaotic sys-
tems, calculated using their Lyapunov exponents. These examples highlight how the
Kaplan-Yorke dimension can be used to quantify the complexity of strange attractors in
different dynamical systems.

Attractor Lyapunov Exponents Kaplan-Yorke Dimension (DKY )
Henon Map λ1 = 0.603, λ2 = −1.64 1 + 0.603

1.64
= 1.368

Lozi Map λ1 = 0.517, λ2 = −1.04 1 + 0.517
1.04

= 1.497
Lorenz System λ1 = 0.905, λ2 = 0, λ3 = −14.57 2 + 0.905

14.57
= 2.062

Rössler System λ1 = 0.089, λ2 = 0, λ3 = −2.672 2 + 0.089
2.672

= 2.033

Table 1: Kaplan-Yorke Dimensions of Selected Chaotic Attractors.

The examples above highlight the diversity of chaotic attractors, where the Kaplan-
Yorke dimension helps us understand how the underlying dynamics shape the complexity
of these systems. The Lyapunov exponents provide essential information about the sta-
bility and divergence behavior of trajectories in phase space.
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Figure 4: Lyapunov Exponents and Dimensions

These calculations are crucial in understanding the global properties of chaotic sys-
tems and assessing the degree of unpredictability in their behavior. For instance, systems
with higher Kaplan-Yorke dimensions tend to exhibit more intricate, unpredictable be-
havior over time, making them more difficult to model and simulate accurately.

5 Applications of Fractal Dimensions in Chaotic Sys-
tems

Fractal dimensions of chaotic systems have far-reaching applications in various fields,
where understanding the complexity of attractors is essential for accurate modeling and
predictions.

1. Climate Modeling
In meteorology, fractal dimensions can help model the irregular patterns of weather
systems. The chaotic behavior of atmospheric dynamics is characterized by strange at-
tractors, which exhibit fractal properties. By studying the fractal dimensions of these
attractors, meteorologists can better understand the scale-invariance of weather patterns,
improving the predictability of long-term climate models.

2. Population Dynamics
Fractal dimensions are also used in ecology to model the growth patterns of species
populations. The chaotic interactions between species can be described using strange
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attractors, with the fractal dimension providing insight into the stability and long-term
behavior of ecological systems. These models are particularly useful in understanding the
non-linear growth of populations under environmental stress.

3. Secure Communications
In the field of cryptography, chaotic systems and their fractal dimensions play a role in
the development of secure communication protocols. By encoding data within chaotic
systems, where the trajectories exhibit sensitive dependence on initial conditions, it be-
comes difficult to predict or intercept transmitted information. The fractal nature of
chaotic systems enhances the security of communication systems by making them more
unpredictable and resistant to decryption.

Exercises for Chapter 3: Chaotic Systems
Exercise 1: Basic Properties of Chaos

1. Understanding Li-Yorke Chaos: Given a one-dimensional continuous map f :
[0, 1] → [0, 1], explain the conditions under which the map exhibits chaotic behavior
according to the Li-Yorke definition. Use a graphical example to illustrate the
behavior of trajectories for different initial conditions.
Solution: According to the Li-Yorke definition, the system is chaotic if there
exists an uncountable set of points S ⊂ [0, 1] such that trajectories starting at
distinct points in S are proximally sensitive (their separation approaches zero at
some iterations), but also exhibit non-asymptotic behavior. A graph plotting the
behavior of trajectories over iterations will show these points getting closer over
time but never fully converging, which is the essence of chaos.

2. Devaney’s Definition of Chaos: Consider a continuous map f : R → R defined
by f(x) = 2x mod 1. Does this map satisfy the conditions of Devaney’s definition
of chaos? Justify your answer by checking each condition of topological transitivity,
density of periodic points, and sensitive dependence on initial conditions.
Solution: - Topological Transitivity: For any pair of non-empty open sets
U,W ⊂ R, there exists an integer k such that fk(U) ∩ W ̸= ∅, satisfying the
topological transitivity condition. - Density of Periodic Points: The map f(x) =
2x mod 1 has dense periodic points since for every point in the interval, there
exists a periodic point arbitrarily close to it. - Sensitive Dependence on Initial
Conditions: The map exhibits sensitive dependence on initial conditions, meaning
that for any two initial points x, y close enough, the distance between their images
under fn grows exponentially.
Since all three conditions are satisfied, the map is chaotic according to Devaney’s
definition.

Exercise 2: Lyapunov Exponents
1. Computation of Lyapunov Exponents: Consider the logistic map f(x) =

rx(1 − x), where r is a control parameter. For r = 3.9, calculate the Lyapunov
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exponent for the map at an initial point x0 = 0.5 over 1000 iterations. Use the
formula for the Lyapunov exponent:

λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|.

Plot the Lyapunov exponent as a function of r for r in the range [3, 4] and discuss
the transition to chaos as r increases.
Solution: The derivative of the logistic map is f ′(x) = r(1− 2x). For r = 3.9 and
x0 = 0.5, iterate the map 1000 times and compute the Lyapunov exponent using the
given formula. Plotting the Lyapunov exponent for r ∈ [3, 4] will show a transition
to chaos as r approaches approximately 3.57, where the exponent becomes positive,
indicating chaotic behavior.

2. Relation Between Lyapunov Exponents and Stability: For a system de-
scribed by a set of differential equations, show how the sign of the Lyapunov expo-
nents correlates with the stability of the fixed points of the system. For example,
consider a system with a fixed point at x = 0 and calculate its Lyapunov exponent.
Solution: For a linear system around a fixed point, the Lyapunov exponent λ can
be computed from the Jacobian matrix evaluated at that fixed point. If λ > 0, the
fixed point is unstable, and trajectories will diverge. If λ < 0, the fixed point is
stable, and trajectories will converge to it. If λ = 0, the fixed point is neutrally
stable.

Exercise 3: Kaplan-Yorke Dimension
1. Calculation of Kaplan-Yorke Dimension: For the Henon map f(x, y) = (1 −

ax2 + by, x) with parameters a = 1.4 and b = 0.3, calculate the Kaplan-Yorke
dimension using the Lyapunov exponents. Assume the exponents are given by
λ1 = 0.4 and λ2 = −1.2. Compute the Kaplan-Yorke dimension and interpret the
result.
Solution: First, calculate the Kaplan-Yorke dimension using the formula:

DKY = 1 +
0.4

1.2
= 1 + 0.333 = 1.333.

The Kaplan-Yorke dimension indicates that the Henon map exhibits a fractal struc-
ture with a dimension between 1 and 2, which is typical for low-dimensional chaotic
systems.

2. Comparison of Lyapunov Exponents and Kaplan-Yorke Dimension: Given
a chaotic system with the following Lyapunov exponents: λ1 = 0.9, λ2 = 0.2,
λ3 = −1.0, calculate the Kaplan-Yorke dimension. Discuss the impact of negative
Lyapunov exponents on the dimensionality of the attractor and compare it to the
Mori dimension for the same system.
Solution: For this system, we calculate the Kaplan-Yorke dimension:

DKY = 2 +
0.9

1.0
= 2 + 0.9 = 2.9.
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Negative Lyapunov exponents indicate contraction in certain directions, which re-
duces the overall ”extent” of the system’s dynamics. The Mori dimension will likely
be smaller than the Kaplan-Yorke dimension because it considers the full distribu-
tion of Lyapunov exponents, including the contraction directions.

Exercise 4: Fractal Dimensions and Strange Attractors
1. Fractal Dimension of a Strange Attractor: Consider a dynamical system with

the following Lyapunov exponents: λ1 = 0.5, λ2 = 0.1, λ3 = −0.8. Calculate the
Mori dimension and Kaplan-Yorke dimension of the attractor. Compare the results
and explain why the dimensions might differ in the context of strange attractors.
Solution: For the Mori dimension:

DM = 1 + 1

(
1 +

0.5

0.8

)
= 1 + 1× 1.625 = 2.625.

For the Kaplan-Yorke dimension:

DKY = 2 +
0.5

0.8
= 2 + 0.625 = 2.625.

In this case, both dimensions are equal, which is typical for systems with clear
expansion and contraction directions. The Mori and Kaplan-Yorke dimensions are
often close when the system is not too high-dimensional.

2. Visualizing a Strange Attractor: Use a software tool (e.g., MATLAB, Python)
to generate a plot of the Lorenz attractor for specific parameter values. Estimate the
fractal dimension of the attractor using the box-counting method or the correlation
dimension method. Discuss how the fractality of the Lorenz attractor affects its
unpredictability.
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