Tutorial Worksheet No.3

Exercise 1.

Let \star be an operation on \mathbb{R}^* defined by

$$\begin{aligned} \star: \mathbb{R}^* \times \mathbb{R}^* &\longrightarrow \mathbb{R}^* \\ (a, b) &\longrightarrow a \star b = \frac{1}{a} + \frac{1}{b} \end{aligned}$$

- 1. Is \star satisfies the following properties : Closure, Identity, Inverse and Associativity.
- 2. Is \star a binary operation?
- 3. Does every elelment in $\mathbb{R}^{-\{-1,0,1\}}$ have its inverse under \star ?

Exercise 2.

Let $A = \{f,g,h,j\}$ and let \sharp be an operation on A defined by the following

#	f	g	h	j
f	f	g	h	j
g h	g	f	j	h
h	h	j	g f	f
j	j	h	f	g

- 1. Is \ddagger a binary operation?
- 2. Determine the identity element and the inverse of each element
- 3. Is \sharp satsfies the following : $j\sharp(g\sharp h)=(j\sharp g)\sharp h$

Exercise 3.

The binary operation * is defined on \mathbb{R} by : $\forall (x, y) \in \mathbb{R}^2 \mid x * y = x + y - axy, (a \in \mathbb{Z}^*)$

- 1. Is $(\mathbb{R}, *)$ a group?
- 2. Solve x * x = 2,(This question is left for the students to solve on their own)
- 3. Determine G so that the combination (G,\ast) forms a group
- 4. Is $(\mathbb{Q}, *)$ a subgroup of the group (G, *)?
- 5. Is * distributive over multiplication?

Exercise 4. (Homework)

Let $G = \mathbb{R}^* \times \mathbb{R}^*$ and let \diamond be an operation on G defined by

$$\forall (a,b) \in G, \forall (c,d) \in G | (a,b) \diamond (c,d) = \left(ac, \frac{d}{a} + b\right)$$

– Show that (G,\diamond) is a non-commutative group.

Exercise 5.

Let (G,*) and (H,\triangleleft) be two groups and let $\phi(x)$ be a group homomorphism defined as follows

$$\phi: G \longrightarrow H$$
$$x \longrightarrow \phi(x) = 2x^2 + 1$$

- 1. Knowing that $e_G = 2\alpha$, determine e_H .
- 2. Prove that $\forall b \in G, \phi(b^{-1}) = (\phi(b))^{-1}$. Deduce the inverse element of β under *, by knowing that γ is the inverse element of $\phi(\beta)$ under \triangleleft .

3. Deduce that
$$\alpha = \frac{1}{2} \left(\beta * \sqrt{\frac{\gamma - 1}{2}} \right)$$

4. Determine $Ker(\phi)$.

Exercise 6.

Let \oplus and \otimes two binary operations on $\mathbb R$ defined by :

 $\forall a, b \in \mathbb{R}: \ a \oplus b = a + b + 1, \ a \otimes b = a + b + ab$

– Prove that the combination $(\mathbb{R},\oplus,\otimes)$ forms an Identity ring?

Exercise 7.

Let \oplus and \otimes two binary operations on \mathbb{R}^2 defined by :

 $\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b) \oplus (c,d) = (a+c,b+d), (a,b) \otimes (c,d) = (ac-bd,ad+bc)$ Does the combination ($\mathbb{P}^2 \oplus \infty$) forms a field 2

– Does the combination $(\mathbb{R}^2,\oplus,\otimes)$, forms a field ?