Chapter 3 : Algebraic structures

A. Djehiche

29 novembre 2024

1 Binary operations

1.1 Definition

The binary operation * on a set A is a function defined by :

$$\begin{array}{c} A \times A \longrightarrow A \\ (a,b) \longrightarrow a \ast b \end{array}$$

This means that for any elements $a, b \in A$ the operation * is said to be a binary operation if and only if $(a * b) \in A$.

Example 1.

Let $A=\{1,2,3\}$ be a set and let \diamond be a relation on A defined by :

$$\begin{array}{c} A \times A \longrightarrow A \\ (a,b) \longrightarrow a \diamond b = \frac{a+b}{2} \end{array}$$

Then, we have

$$\begin{array}{c} (1,1) \longrightarrow 1 \diamond 1 = \frac{1+1}{2} = 1 \in A \\ (1,2) \longrightarrow 1 \diamond 2 = \frac{1+2}{2} = \frac{3}{2} \notin A \end{array}$$

and this imply that the operation \diamond is not a binary operation on A.

Example 2.

Addition (+) on $\mathbb N$ is a binary operation

$$\begin{array}{c} \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \\ (k_1, k_2) \longrightarrow k_1 + k_2 \end{array}$$

The sum of two natural numbers is always a natural number

1.2 Properties of binary operations :

Let * be a binary operation on a set A.

a) Closure property :

The binary operation * is said to be closure if

 $(a,b) \in A^2 \Rightarrow (a*b) \in A$

b) Associative property :

The binary operation * is associative if

 $\forall a, b, c \in A \Rightarrow a * (b * c) = (a * b) * c$

c) Commutative property :

Comutativity means $\forall a, b \in A, a * b = b * a$

d) Destributive property :

Let # be another relation on A, we say that the binary operations * and # are distributive if

$$a * (b \# c) = (a * b) \# (a * c)$$
 for all $a, b, c \in A$

As an example the additin (+) and multiplication (·) on R^* are destributive.

e) Identity :

Identity element is denoted by e and defined by

 $\forall a \in A$ there is only one element $e \in A$ such that a * e = e * a = a

f) Inverse property :

We say that a is the inverse of b under * or b is the inverse of a under * if a * b = b * a = e, with $a, b \in A$.

Example

Let \diamond be an operation on \mathbb{R} defined by :

$$\forall (x,y) \in \mathbb{R}^2 \longrightarrow x \diamond y = x + y + xy$$

1. Closure property of \diamond :

For all $a, b \in \mathbb{R}$: $a + b + ab \in \mathbb{R}$ because the addition and multiplication of real numbers are real.

2. Associative property of \diamond :

We have

 $a \diamond (b \diamond c) = a + (b \diamond c) + a (b \diamond c) = a + b + c + bc + ab + ac + abc$, and $(a \diamond b) \diamond c = (a \diamond b) + c + (a \diamond b) c = a + b + ab + c + abc + ac + bc$ Thus, $a \diamond (b \diamond c) = (a \diamond b) \diamond c \Longrightarrow \diamond is$ assiciative binary operation.

3. Commutative property of \diamond :

 $a * b = a + b + ab = b * a \Rightarrow \diamond$ is commutative binary operation.

4. Identity :

 $a * e = e * a = a + e + ea = a \Rightarrow e = 0$

5. Inverse :

$$a * b = b * a = a + b + ab = e \Rightarrow b = \frac{-a}{1+a} = a^{-1}$$

It is obvious that the element -1 does not have an inverse element . This is because $a^{-1} = \frac{-a}{1+a}$ is undefined at a = -1.

2 Introduction to groups

2.1 Group

Definition 1.

We say that the operation * on a set G forms a group if the following properties are satisfied :

- 1. Closure : $\forall a, b \in G : a * b \in G$.
- 2. Associativity : $\forall a, b, c \in G : a * (b * c) = (a * b) * c$
- 3. Identity element : $\forall a \in G, \exists e \in G : a * e = e * a = a$
- 4. Inverse element : $\forall a \in G, \exists b \in G : a * b = b * a = e$

Definition 2.

The group (G, *) is said to be commutative (or abelian) if satisfies , in addition to the group conditions, the commutativity property.

Example 1 : Addition on the set of integer numbers $(\mathbb{Z}, +)$

- 1. Closure : $\forall a, b \in \mathbb{Z} : a + b$ is also an integer ($a + b \in \mathbb{Z}$).
- 2. Associativity : $\forall a, b, c \in \mathbb{Z}$: a + (b + c) = (a + b) + c
- 3. Identity element : $\forall a \in \mathbb{Z}, \exists e \in \mathbb{Z} : a + e = e + a = a \Rightarrow e = 0$
- 4. Inverse element : $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z} : a + b = b + a = e = 0 \Rightarrow b = a^{-1} = -a$

Example 2 : Multiplication on the set of non-zero real numbers (\mathbb{R}^*, \cdot)

- 1. Closure : $\forall a, b \in \mathbb{R}^* : a \cdot b$ is also an integer ($a \cdot b \in \mathbb{R}^*$).
- 2. Associativity : $\forall a, b, c \in \mathbb{R}^* : a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Identity element : $\forall a \in \mathbb{R}^*, \exists e \in \mathbb{R}^* : a \cdot e = e \cdot a = a \Rightarrow e = 1$
- 4. Inverse element : $\forall a \in \mathbb{R}^*, \exists b \in \mathbb{R}^* : a \cdot b = b \cdot a = e = 1 \Rightarrow b = a^{-1} = \frac{1}{a}$

Example 3 :

The combination (\mathbb{R},\diamond) , where \diamond is defined by $a\diamond b = a+b+ab$, is not a group, instead $(\mathbb{R}^{-\{-1\}},\diamond)$ is a group.

2.2 Sub-group

Subgroup (H, *) of a group (G, *) is a subset of G manifests the same properties as (G, *).

Definition

The group (H, *) is said to be a subgroup of (G, *) if the following have been checked

- 1. Closure : $\forall a, b \in H : a * b \in H$.
- 2. Identity element : $\forall a \in H, \exists e \in H \mid a * e = e * a = a. (e_H = e_G)$
- 3. Inverse element : $\forall a \in H, \exists a^{-1} \in H \mid a * a^{-1} = e$.

Examples :

- 1. $(2\mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$
- 2. $(\mathbb{R}^+,\cdot) \text{is a subgroup of } (\mathbb{R}^*,\cdot)$

2.3 Homomorphisms and isomorphisms

1. The groups (G,*) and (H,\diamond) are homomorphic if there exist a function $\phi:G\longrightarrow H$ such that

$$\forall a, b \in G, \phi(a \ast b) = \phi(a) \diamond \phi(b)$$

In this case ϕ is called Homomorphism.

2. The groups (G, *) and (H, \diamond) are isomorphic if there exist a $\underline{bijective}$ function $\phi: G \longrightarrow H$ such that

$$\forall a, b \in G, \phi(a \ast b) = \phi(a) \diamond \phi(b)$$

In this case ϕ is called isomorphism. It is worth noting that the isomorphism is a special case of homomrphism and thus

$$\phi$$
 is isomorphism $\Rightarrow \phi$ is homomorphism

2.4 Properties

Let $\phi : G \longrightarrow H$ be a function (may be bijective). ϕ is said to be homorphism (or isomorphism), then the following hold true :

- 1. Identity preservation : $\phi(e_G) = e_H$, where e_G is the identity element of G, and e_H is the identity element of H.
- 2. Inverse preservation : $\forall a \in \phi(a^{-1}) = (\phi(a))^{-1}$, where a^{-1} is the inverse element of a under the binary operation of the group G, and where $(\phi(a))^{-1}$ is the inverse element of $\phi(a)$ under the binary operation of the group H.
- 3. Kernel of homomorphism : $Ker(\phi) = \{a \in G \mid \phi(a) = e_H\}$
- 4. Image of homomorphism : $Im(\phi) = \{\phi(a) \mid a \in G\}$

Example

Let f(x) be a function defined by :

$$f: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^+, \cdot)$$
$$x \longrightarrow f(x) = e^x$$

- We have $f(a+b) = e^{a+b} = e^a \cdot e^b = f(a)f(b) \Rightarrow f(x)$ is a group homomorphism
- We know that the function e^x is bijective $\Rightarrow f(x)$ is a group isomorphism
- $Ker(f) = \left\{ a \in \mathbb{R} \mid \phi(a) = e^a = e_{(\mathbb{R}^+, \cdot)} = 1 \right\} = \{0\}$

Exercise

Let (G, \circ) be a group and let h be a function defined by

$$\begin{split} h: (G, \circ) & \longrightarrow (G, \circ) \\ x & \longrightarrow h(x) = a^{-1} \circ x \circ a \end{split}$$

3 Rings

3.1 Definition

A ring is an algebraic structure represented by a set with two operations called addition and multiplication. Thus, the combination $(A, \oplus, *)$ is a ring if :

- **1.** (A, \oplus) is a commutative group
- 2. * is associative
- 3. * is distributive over \oplus

3.2 Properties

- If * is commutative, then $(A, \oplus, *)$ is said to be commutative ring.
- If * satisfies the Identity property, then $(A, \oplus, *)$ is said to be Identity ring.

Examples :

All of the following form a ring :

 $(\mathbb{C},+,\cdot),\;(\mathbb{R},+,\cdot),\;(\mathbb{Q},+,\cdot),\;(\mathbb{Z},+,\cdot).$ Where + and \cdot are the ordinary addition and multiplication-

— Addition and multiplication of polynomials R[x] with real coeffecients forms a commutative ring.

4 Fields

4.1 Definition

The combination $(A, \oplus, *)$ forms a field if :

- 1. (A,\oplus,\ast) is and Identity ring
- **2.** $(A^{-\{e_{\oplus}\}}, *)$ is a group.

Examples

All of the following form a ring :

 $(\mathbb{C},+,\cdot),(\mathbb{R},+,\cdot),(\mathbb{Q},+,\cdot). \\ \text{Where} + \text{and} \cdot \text{are the ordinary addition and multiplication} \cdot \\$