Directed Work Series No.1

29 novembre 2024

Solution of the Exercises

Exercise 1.

 $Case1: (3 is odd number) \Longrightarrow (3 is a prime number)$

— The statement $P \Rightarrow Q$ is true only if P is true and Q is false and then the statement (3 is odd number) \Longrightarrow (3 is a prime number) is true becaus (3 is odd number) is true and (3 is a prime number) is true

 $Case2: ((3 is odd number) \Longrightarrow (3 is a prime number)) \Rightarrow (9 is prime number)$

— We show from the previous that the statement (3 is odd number) \implies (3 is a prime number) is true but (9 is prime number) is false imply that the statement is false

 $Case3: (4 is odd number) \Longrightarrow (11 is a prime number)$

— The statement is true because the hypothesis (4 is odd number) is false and the conclusion (11 is a prime number) is true.

 $Case4: ((\forall x \in]-5, -1[| | x+3 | < 2)) \land (\forall x \in [-5, 1] | x^2 + 2x - 8 \le 0)$

— The statement $P \wedge Q$ is tue only if both P and Q are true.

we have
$$P : ((\forall x \in]-5, -1[| | x+3 | < 2))$$

 $P \text{ is true because } -2 < x+3 < 2$
 $-5 < x < -1$

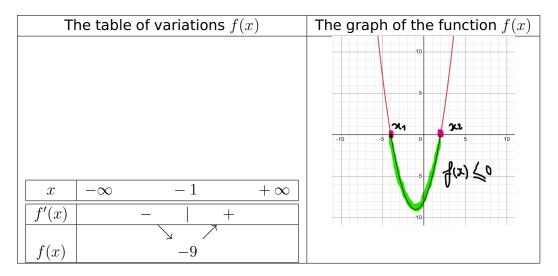
To show if the statement $Q : (\forall x \in [-5,1] | f(x) \le 0)$ is true we have to determine the interval where the inequality $f(x) = x^2 + 2x - 8 \le 0$ holds. The inequality $f(x) \le 0$ is valid where the graph of f(x) is below the x-axis. We start by studing the variations of The function

$$f(x) = 0 \Rightarrow x_1 = \frac{-2 - \sqrt{36}}{2} = -4, \ x_2 = \frac{-2 + \sqrt{36}}{2} = 2$$

Dr. A. Djehiche

$$f'(x) = 2x + 2 \Rightarrow x_{min} = -1 \text{ and } f(-1) = -9$$

graph and the table of variation are shown in the following



The inequality $f(x) \leq 0$ is valid if $x \in [-4, 1]$, and for that the function f(x) is not valid for all $x \in [-5, 1]$. Thus the statement $Q : (\forall x \in [-5, 1] \mid f(x) \leq 0)$ is false. We have P is true and Q is false, then $P \wedge Q$ is false.

$$Case5: \overline{(x^2=4 \Leftrightarrow x=2)} \Leftrightarrow (x^2=4 \Leftrightarrow x\neq 2)$$

- We know that $\overline{P \Leftrightarrow Q}$ and $P \Leftrightarrow \overline{Q}$ are two equivalent statements, so fourth $\overline{(x^2 = 4 \Leftrightarrow x = 2)} \equiv (x^2 = 4 \Leftrightarrow x \neq 2)$. Therefor, the statement $\overline{(x^2 = 4 \Leftrightarrow x = 2)} \Leftrightarrow (x^2 = 4 \Leftrightarrow x \neq 2)$ is equivalent to $(x^2 = 4 \Leftrightarrow x \neq 2) \Leftrightarrow (x^2 = 4 \Leftrightarrow x \neq 2)$ which is always true because every statement is logically equivalent to itself.

$$Case6: (\int_{2}^{5} \sqrt{x+2} dx = \int_{2}^{7} y dy, where y^{2} = x+2) \quad \lor \quad (\forall k \in \mathbb{N} \ k^{2}+1 \ is \ odd)$$

— The statement $P \lor Q$ is false only if both P and Q are false. the statement $P : \int_2^5 \sqrt{x+2} dx = \int_2^7 y dy$, where $y^2 = x+2$ is false for the reason that $\sqrt{x+2} \neq 7$ for x = 5. The statement $Q : (\forall k \in \mathbb{N} \ k^2 + 1 \ is \ odd)$ is false because $1^2 + 1 = 2$. We deduce that P is false and Q is false, then $P \lor Q$ is false.

Exercise 2.

Two statements said to be equivalent if they have the same truth values.

ThetruthTableofthestatementa : $((P \Rightarrow Q) \Rightarrow R)$ and P

P	Q	R	$(P \Rightarrow Q)$	$((P \Rightarrow Q) \Rightarrow R)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	Т	F	Т	F
F	F	Т	Т	Т
F	F	F	Т	F

From the truth table we can notice that the two statements are not equivalent.

Tł	ThetruthTableofthestatementb : $(P \Leftrightarrow Q)$ and $((P \Rightarrow Q) \land (Q \Rightarrow P))$							
I	D	Q	$(P \Leftrightarrow Q)$	$(P \Rightarrow Q)$	$(Q \Rightarrow P)$	$((P \Rightarrow Q) \land (Q \Rightarrow P))$		
٦	Г	Т	Т	Т	Т	Т		
٦	Γ	F	F	F	Т	F		
F	=	Т	F	Т	F	F		
F	=	F	Т	Т	Т	Т		

From the truth table we can notice that the two statements $(P \Leftrightarrow Q)$ and $((P \Rightarrow Q) \land (Q \Rightarrow P))$ are not equivalent.

ThetruthTableofthestatementc : $(\overline{P} \lor Q)$ and $(\overline{Q} \lor P)$

P	Q	\overline{P}	\overline{Q}	$(\overline{P} \lor Q)$	$(\overline{Q} \lor P)$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	Т
F	Т	Т	F	Т	F
-	-	-			

From the truth table we can notice that the two statements are not equivalent.

ThetruthTableofthestatementd : $\overline{(P \Leftrightarrow Q)}$ and $(P \Leftrightarrow \overline{Q})$

P	Q	\overline{Q}	$P \Leftrightarrow Q$	$\overline{(P \Leftrightarrow Q)}$	$(P \Leftrightarrow \overline{Q})$
Т	Т	F	Т	F	F
Т	F	Т	F	Т	Т
F	Т	F	F	Т	Т
F	F	Т	Т	F	F

From the truth table we can notice that the two statements are equivalent.

ThetruthTableofthestatemente : $(P \lor (Q \Rightarrow R))$ and $((P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R))$

P	Q	R	$(Q \Rightarrow R)$	$(P \Rightarrow Q)$	$(P \Rightarrow R)$	$(P \lor (Q \Rightarrow R))$	$((P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R))$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	Т	F
Т	F	Т	Т	F	Т	Т	F
Т	F	F	Т	F	F	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F	Т
F	F	Т	Т	Т	F	Т	F
F	F	F	Т	Т	Т	Т	Т

From the truth table we can notice that the two statements are equivalent.

Thestatemente, fit can be completed by student at home (as homework for example).

Exercise 3.

a) Proving the truthy or falsy of the statements :

- 1. i) if k is odd, then k+1 is even.ii) if k is even, then k+1 is odd. The multiplication of odd number by an odd number is always gives an even number. The statement $\forall k \in \mathbb{N} \mid k(k+1)$ is odd is false
- 2. It is known that $(x-2)^2 \ge 0 \Rightarrow x+4 \ge 2x$ and this leads to x+5 > 2x. Thus, the statement $\forall x \in \mathbb{R} \mid x^2+5 > 2x$ is true.
- 3. We can easly show that $x(x^2+1) < 0$ if x < 0 and therefor the $\forall x \in \mathbb{R} \mid x^3 + x \ge 1$ is false. Also you can show that the statement is not valid if x = 0.
- 4. The statement $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z} \mid x^3 + y^2 \ge 1$ is true since there exist a least an x = 1 where $1 + y^2 \ge 1$.
- 5. The statement $\exists x \in \mathbb{R}, \forall n \in \mathbb{N} \mid x + 3n$ is multiple of 3 is true because it can be shown that the statement is vrified as x = 3.
- 6. The statement $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid y > x(2-x) + 1$ is true. One can take y = x(2-x) + 2 to check that y > x(2-x) + 1.
- b) The negation of the statements :
 - $\exists k \in \mathbb{N} \mid k(k+1)$ is not odd
 - $\exists x \in \mathbb{R} \mid x^2 + 5 \le 2x$
 - $\exists x \in \mathbb{R} \mid x^3 + x 1 < 0$
 - $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \mid x^3 + y^2 < 1$
 - $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \mid x + 3n \text{ is not a multiple of 3}$
 - $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \mid y \le x(2-x) + 1$

Exercise of
1) let a, b, c
$$\in JV$$
 - a divides $b \Rightarrow b = ea$ where $e \in IV$
- a divides $c \Rightarrow c = ra$ if $r \in JV$
 $\Rightarrow b + c = la + ra = (l+r)a$
Since $(l+r) \in N$, then been divide a divide
 $(b+c)$
2) n is odd $\Rightarrow n = 2k + 1/k \in N$
 $n^2 = (2k+n)^2 = 4(k^2 + 1 + 2k)$
 $= 2k(2k+n) + 1$
 $2k \text{ is even and } (2k+n) \text{ is odd } \Rightarrow 2k(2k+n) \text{ is even}$
Thus, $2k(2k+n) + 1$ is odd
3) $(a = b) = i \left(\frac{a}{b+n} = \frac{b}{b+n}\right)$
We assume that $a = b$ is to be true
and by mall i plying by $\frac{1}{b+n}$, we can get
 $\frac{a}{b+n} = \frac{b}{b+n}$
4) $\left(\frac{a}{b+1} = \frac{b}{b+n}\right)(=)(a=b)$
This equivalent to $\left(\frac{a}{b+n} = \frac{b}{a+1}\right) = i(a=b)$
and $(a=b) = i \left(\frac{a}{b+n} = \frac{b}{a+1}\right)$

4.a/ We start from a = b which imply that 1.2 $a(a+1) = b(b+1) =) a^2 + a - b^2 - b = 0$ =) (a-b)(a+b) + a-b = 0=) (a-b) (a+b+^) = 0 We have two solutions a=b a=-b-1 = We know that $a, b \in IR_{+}^{+}$ lead us to concel the second solution $= \left(\frac{a}{b+1} = \frac{b}{a+1}\right) = a = b$ 4. b/ we start from (a = b) $a=b=) \quad a\frac{b+1}{b+1}=b\frac{a+1}{a+1}$ $\frac{a}{b+1} = \frac{b}{a+1} \left(\frac{a+1}{b+1} \right)$ the last equation is equality equivalent $t_{a} = \frac{b}{b+1}$ if $\binom{a+1}{b+1} = 1 = (a = b)$ and we can deduce that $\left(\frac{a}{b+1} = \frac{b}{a+1}\right) = \left(a = b\right)$ $\left(\frac{a}{b+1} = \frac{b}{a+1} \right) = \left(a = b \right) \text{ and } \left(a = b \right) = \left(\frac{a}{b+1} = \frac{b}{a+1} \right)$ Which gives $\left(\frac{a}{b+n} = \frac{b}{a+n}\right) = \left(a=b\right)$

5) We throw that
$$(a-b)^{2} \ge 0$$

 $a^{2}+b^{2}-2a \ge 0 = a^{2}+b^{2}+2ab-2ab \ge 2ab$
 $=) (a+b)^{2} \ge 4ab$
 $=) (a+b)^{2} \ge 4ab$
 $=) (a+b) \ge 2\sqrt{ab}$
 $=) (a+b) \ge \sqrt{ab}$
 $Exercise 05 :$
 $proof by contrapositive:$
to prove $(p=sq)$ it is sufficient to prove $\overline{q}=>\overline{p}$
1. $p: adjoids p \ q: a duvides c \ R: a dividy b+c$
 $to prove (p = sq)$ it is sufficient to prove
 $for even (p = sq)$ it is sufficient to prove
 $for even (p = sq)$ it is sufficient to prove
 $for even (p = sq)$ it is sufficient to prove
 $for even (p = sq)$ it is sufficient to prove
 $for even (p = sq)$ it is sufficient to prove
 $R = \sum \overline{p} \lor \overline{q}$
 \overline{R} : a does not divide $b+c = \sum b+c = ea+s \ o \le s \le kc$
 \overline{p} : a does not divide $b+c = \sum b+c = ea+s \ o \le s \le kc$
 \overline{q} : a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is a does not divide $b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ o \le s \le kc$
 \overline{q} is $a \ does not \ divides \ b+c = b+c = ea+s \ b+c = b+c \ b+c = b+c \ b+c = b+c \ b+c$

Exercise of 1) p: VKEZ: Julta JK we supose the statement VK211 < K istrue =) k2+1 < k2 -) 1 <0 =) contradiction the statement Jkein Kk leads to a contradiction and this is a good reason newsgo to show that Vkenn 7, k is true. 2) $(a+b)^{n} \neq a^{n} + b^{n}$ We assume that $(a+b)^{n} = a^{n} + b^{n}$ $=)(a+b)^{n+1-1}=a^{n}+b^{n}$ =) $(a+b)^{n+1} = (a^{n}+b^{n})(a+b)$ $(a+b)^{n+1} = a^{n+1} + b^{n+1} + a^{n}b + b^{n}a$ $=)(a+b)^{n+1} = a^{n+1} + b^{n+1}$ leading to a contradiction. (consilio) $(a+b)^{h} = a^{h} + b^{h}$ iBring us to a contradiction =) (a+b) + a"+b" is true

6 3 P 2 > n =) p: 2 < n We assume that 2 < n is true, then 2 < n2 For n=2 =) 2 < Jz (=) contradiction assuming P'true leads to a contraction and thus, 2 n is true. a series i s 4/ p: a+b < Vab => a+b<2 Jab -) (a+b)2 < 4ab -, (a+b)2-2ab <2ab => a2+b2 < 2ab , a2+b2-eab 20 =) (a-b)2 <0 a+b < Vab ledds to (a-b) <0 and that with the ma contraction =) a+b > tab 1 true