Abdelhafid Boussouf University Center - Mila Institute of Natural and Life Sciences Department of Biotechnology Module: Biophysics

Series 4: Diffusion phenomena

Exercise: 1

A porous membrane with a total pore surface area $S=0.05m^2$ separates two compartments containing sucrose at concentrations of 0.5 and 0.2 mol/L, respectively. These concentrations are maintained constant during the diffusion of sucrose molecules through the membrane. It is assumed that a steady-state regime is established.

➤ What is the value of the flow rate?

Given: diffusion coefficient of sucrose $D=8\times10^{-10}$ m²/s, membrane thickness e=10 μ m.

Exercise: 2

Let there be a porous membrane with a thickness *e* and a surface area $S=50cm^2$ separating two compartments. At time *t*=0, 2 liters of pure water are introduced into the first compartment and 2 liters of an aqueous solution with a solute concentration of 1 mole/L are introduced into the second compartment. If after 30 seconds the concentration in the first compartment is 10^{-6} mole/cm³

> determine the thickness *e* of the membrane, assuming that the concentration gradient remains linear across the thickness *e*. Given: $D=5.344 \times 10^{-5} \text{ cm}^2/\text{s}$

Exercise: 3

The diffusion coefficient of insulin in aqueous solution at 25°C is equal to $8.2 \times 10^{-11} \text{m}^2 \text{s}^{-1}$.

- 1. Calculate the radius of this molecule, assumed to be spherical.
- 2. Deduce the molar mass of insulin from this result.
- 3. What would be the diffusion coefficient of insulin at 0° C?
- 4. What would be the diffusion coefficient of urea in aqueous solution at 0° C?

The given data is:The density of insulin: 1300 kg/m³, η_{H2O} : 1 mPa·s ,K=1.38×10⁻²³J/K , M_{urea}: 60 g/mol

Exercise:4

A reservoir is divided into two compartments by a porous membrane with a surface area of 3 cm² and a thickness of 0.1 mm. In one of the compartments, an aqueous solution of 2 mmol/L is placed, and in the other, pure water. The initial molecular diffusion flux of the solute is 4.2×10^{-12} mol/s.

- 1. Calculate the permeability coefficient *P*of the membrane for the molecule.
- 2. Deduce the molecular diffusion coefficient from this.

Academic year 2024–2025