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Memory Challenge

=" Make memory appear as fast as processor
=|deal memory:

Fast

Cheap (inexpensive)

Large (capacity)




Review: What were Memory Elements ?

= Memories are large blocks
= A significant portion of a modern circuit is memory.

= Memories are practical tools for system design

® Programmability, reconfigurability all require memory

= Allows you to store data and work on stored data

® Not all algorithms are designed to process data as it comes, some
require data to be stored.

= Data type determines required storage

How Can We Store Data

Flip-Flops (or Latches)

= Very fast, parallel access

= Expensive (one bit costs 20+ transistors)
Static RAM

= Relatively fast, only one data word at a time

= Less expensive (one bit costs 6 transistors)
Dynamic RAM

= Slower, reading destroys content (refresh), one data word at a time, needs special
process

= Cheaper (one bit is only a transistor)

Other storage technology (hard disk, flash)
= Much slower, access takes a long time, non-volatile
= Per bit cost is lower (no transistors directly involved)




Exploit locality to make memory accesses fast

=Temporal Locality:
Locality in time
If data used recently, likely to use it again soon

How to exploit: keep recently accessed data in higher levels of
memory hierarchy

=Spatial Locality:
Locality in space
If data used recently, likely to use nearby data soon

How to exploit: when access data, bring nearby data into higher
levels of memory hierarchy too E

Taking Advantage of Locality

=*Memory hierarchy
=Store everything on disk

= Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

=" Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU




Memory Hierarchy
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Cache Terminology

Capacity (C):

= the number of data bytes a cache stores

Block size (b):

= bytes of data brought into cache at once

Number of blocks (B = C/b):

= number of blocks in cache: B=C/b

Degree of associativity (N):

= number of blocks in a set

Number of sets (S = B/N):

= each memory address maps to exactly one cache set

How It Works?
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How It Works?

=Block (aka line): unit of copying
May be multiple words

= |f accessed data is present in upper level
Hit: access satisfied by upper level i

= Hit ratio: hits/accesses
= |f accessed data is absent

Miss: block copied from lower level
= Time taken: miss penalty

Processor

= Miss ratio: misses/accesses = 1 — hit ratio Memory [T
Then accessed data supplied from upper level

*On cache hit, CPU proceeds normally

®*On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy
Instruction cache miss
= Restart instruction fetch

Data cache miss

= Complete data access




Miss Types

= Compulsory: first time data accessed
= Capacity: cache too small to hold all data of interest

= Conflict: data of interest maps to same location in

cache

12
Mapping function

m There are fewer cache blocks than main memory blocks, an
algorithm is needed for mapping main memory blocks into
cache blocks.

s Need to determine which main memory block currently
occupies a cache block.

m The choice of the mapping function dictates how the cache is
organized.

m *Three technigues for mapping function:

® Direct mapped
= N-way set associative
® Fully associative




Tags and Valid Bits

"How do we know which particular block is stored in a
cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

=What if there is no data in a location?
Valid bit: 1 = present, 0 = not present
Initially O

Direct Mapped Cache

= ocation determined by address
=Direct mapped: only one choice

(Block number) modulo (#Blocks in cache)

g = #Blocks is a power of 2
M = = Use low-order address bits
emory ><
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11...
11...
11...
11...
11...
11...
11...
11...

00...
00...
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00...
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Address
11111100
11111000
11110100
11110000
11101100
11101000
11100100
11100000

L J
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L J
00100100
00100000
00011100
00011000
00010100
00010000
00001100
00001000
00000100
00000000

Direct Mapped Cache
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230 Word Main Memory

23 Word Cache

Block Number
7(111)
6(110)
5(101)
4(100)
3(011)
2(010)
1(001)
0(000)

=8-blocks, 1 word/block, direct mapped

Direct Mapped Cache Example

= |nitial state

Index

Tag

Data

000

001

010

011

100

101

110

111
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Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101
110
111

Tag Data

10 Mem[10110]

ZzlI<|Zz|1Zz|z|Zz|Zz|Z2|<

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
26 11 010 Miss 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem[11010]

10 Mem[10110]

Z|I<|Zz|1Zz|Zz|X|Z2|Z2|<
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Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index \% Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N
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Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem([10110]

111 N

Associative Caches

=Fully associative

Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

=n-way set associative
Each set contains n entries
Block number determines which set
= (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)
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Associative Cache Examples

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta
Tag 2 9 12 g 2
Search T Search T I Search T T I T T T | T

Spectrum of Associativity

="For a cache with 8 entries

One-way set associative
(direct mapped)
Block Tag Data

0

Two-way set associative

Set Tag Data Tag Data
0

9
2
3

~N O s W N =

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

L rrrrrrrr ]




Associativity Example

=Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

=Direct mapped

Block Cache | Hit/miss Cache content after access
address | index 0 1 2 3
0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem|[O0] Mem|6]
8 0 miss Mem[8] Mem[6]

(27
Associativity Example

= 2-way set associative

Block Cache | Hit/miss Cache content after access
address | index Set 0 Set 1
0 0 miss | Mem[Q]

8 0 miss Mem[0] | Mem[8]
0 0 hit Mem[0] | Mem[8]
6 0 miss Mem|[0] | Mem[6]
8 0 miss | Mem([8] | Mem|[6]

= Fully associative

Block Hit/miss Cache content after access
address
0 miss | Mem|[0]
8 miss Mem([0] | Mem|[8]
0 hit Mem[0] | Mem[8]
6 miss Mem[0] | Mem[8] | Mem|[6]
8 hit | Mem[0] | Mem[8] | Mem[6] @




Replacement Policy

=Direct mapped
No choice
= Associative
Any invalid block first
If all are valid, consult the replacement policy
= Random
= FIFO first in first out
= LRU Least recently used
= LFU Least frequently used

Write-Through

="On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

=\Write through: also update memory

=But makes writes take longer

=Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately
= Only stalls on write if write buffer is already full
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= Alternative: On data-write hit, just update the block in
cache
Keep track of whether each block is dirty
=»When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
31
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