
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2024-2025

1

Chapiter 4:

Main Memory and Caches

Make memory appear as fast as processor

Ideal memory:

Fast

Cheap (inexpensive)

Large (capacity)

 But can only choose two!

2

Memory Challenge

2

Review: What were Memory Elements ?

■ Memories are large blocks

 A significant portion of a modern circuit is memory.

■ Memories are practical tools for system design

 Programmability, reconfigurability all require memory

■ Allows you to store data and work on stored data

 Not all algorithms are designed to process data as it comes, some
require data to be stored.

 Data type determines required storage

3

How Can We Store Data

 Flip-Flops (or Latches)

 Very fast, parallel access

 Expensive (one bit costs 20+ transistors)

 Static RAM

 Relatively fast, only one data word at a time

 Less expensive (one bit costs 6 transistors)

 Dynamic RAM

 Slower, reading destroys content (refresh), one data word at a time, needs special
process

 Cheaper (one bit is only a transistor)

 Other storage technology (hard disk, flash)

 Much slower, access takes a long time, non-volatile

 Per bit cost is lower (no transistors directly involved)

4

3

Exploit locality to make memory accesses fast

Temporal Locality:
 Locality in time

 If data used recently, likely to use it again soon
 How to exploit: keep recently accessed data in higher levels of

memory hierarchy

Spatial Locality:
 Locality in space

 If data used recently, likely to use nearby data soon

 How to exploit: when access data, bring nearby data into higher
levels of memory hierarchy too

5

Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU
6

Taking Advantage of Locality

4

7

Memory Hierarchy

8

Memory Hierarchy

Personal mobile
device

Laptop or
desktop

Server

5

Cache Terminology

■ Capacity (C):

 the number of data bytes a cache stores

■ Block size (b):

 bytes of data brought into cache at once

■ Number of blocks (B = C/b):

 number of blocks in cache: B = C/b

■ Degree of associativity (N):

 number of blocks in a set

■ Number of sets (S = B/N):

 each memory address maps to exactly one cache set
9

10

How It Works?

6

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

 Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses = 1 – hit ratio
 Then accessed data supplied from upper level

 11

How It Works?

Processor

L1

L2

Memory

On cache hit, CPU proceeds normally

On cache miss

Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss

 Restart instruction fetch

Data cache miss

 Complete data access
12

Hits and Misses

7

Compulsory: first time data accessed

Capacity: cache too small to hold all data of interest

Conflict: data of interest maps to same location in

cache

13

Miss Types

Mapping function
■ There are fewer cache blocks than main memory blocks, an

algorithm is needed for mapping main memory blocks into
cache blocks.

■ Need to determine which main memory block currently
occupies a cache block.

■ The choice of the mapping function dictates how the cache is
organized.

■ •Three techniques for mapping function:

 Direct mapped

 N-way set associative

 Fully associative

14

8

How do we know which particular block is stored in a
cache location?

Store block address as well as the data

Actually, only need the high-order bits

Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present

 Initially 0
15

Tags and Valid Bits

Location determined by address

Direct mapped: only one choice

 (Block number) modulo (#Blocks in cache)

16

Direct Mapped Cache

#Blocks is a power of 2

Use low-order address bits

Cache

Memory

9

Direct Mapped Cache

Block Number
7 (111)

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

00...00100100

00...00100000

00...00011100

00...00011000

00...00010100

00...00010000

00...00001100

00...00001000

00...00000100

00...00000000

230 Word Main Memory

mem[0xFF...FC]

mem[0xFF...F8]

mem[0xFF...F4]

mem[0xFF...F0]

mem[0xFF...EC]

mem[0xFF...E8]

mem[0xFF...E4]

mem[0xFF...E0]

mem[0x00...24]

mem[0x00..20]

mem[0x00..1C]

mem[0x00...18]

mem[0x00...14]

mem[0x00...10]

mem[0x00...0C]

mem[0x00...08]

mem[0x00...04]

mem[0x00...00]

23 Word Cache

Address
11...11111100

11...11111000

11...11110100

11...11110000

11...11101100

11...11101000

11...11100100

11...11100000

17

8-blocks, 1 word/block, direct mapped

Initial state

18

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

10

19

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

20

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

11

21

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

22

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

12

23

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries
Block number determines which set

 (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

24

Associative Caches

13

25

Associative Cache Examples

For a cache with 8 entries

26

Spectrum of Associativity

14

Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

27

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

2-way set associative

28

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Fully associative
 Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

15

Direct mapped
No choice

 Associative
Any invalid block first
 If all are valid, consult the replacement policy

Random
FIFO first in first out
LRU Least recently used
LFU Least frequently used

29

Replacement Policy

On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

Write through: also update memory
But makes writes take longer
Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately
 Only stalls on write if write buffer is already full

30

Write-Through

16

Alternative: On data-write hit, just update the block in

cache

Keep track of whether each block is dirty

When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
31

Write-Back

