
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2024-2025

1

Chapiter 4:

Main Memory and Caches

Make memory appear as fast as processor

Ideal memory:

Fast

Cheap (inexpensive)

Large (capacity)

 But can only choose two!

2

Memory Challenge

2

Review: What were Memory Elements ?

■ Memories are large blocks

 A significant portion of a modern circuit is memory.

■ Memories are practical tools for system design

 Programmability, reconfigurability all require memory

■ Allows you to store data and work on stored data

 Not all algorithms are designed to process data as it comes, some
require data to be stored.

 Data type determines required storage

3

How Can We Store Data

 Flip-Flops (or Latches)

 Very fast, parallel access

 Expensive (one bit costs 20+ transistors)

 Static RAM

 Relatively fast, only one data word at a time

 Less expensive (one bit costs 6 transistors)

 Dynamic RAM

 Slower, reading destroys content (refresh), one data word at a time, needs special
process

 Cheaper (one bit is only a transistor)

 Other storage technology (hard disk, flash)

 Much slower, access takes a long time, non-volatile

 Per bit cost is lower (no transistors directly involved)

4

3

Exploit locality to make memory accesses fast

Temporal Locality:
 Locality in time

 If data used recently, likely to use it again soon
 How to exploit: keep recently accessed data in higher levels of

memory hierarchy

Spatial Locality:
 Locality in space

 If data used recently, likely to use nearby data soon

 How to exploit: when access data, bring nearby data into higher
levels of memory hierarchy too

5

Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU
6

Taking Advantage of Locality

4

7

Memory Hierarchy

8

Memory Hierarchy

Personal mobile
device

Laptop or
desktop

Server

5

Cache Terminology

■ Capacity (C):

 the number of data bytes a cache stores

■ Block size (b):

 bytes of data brought into cache at once

■ Number of blocks (B = C/b):

 number of blocks in cache: B = C/b

■ Degree of associativity (N):

 number of blocks in a set

■ Number of sets (S = B/N):

 each memory address maps to exactly one cache set
9

10

How It Works?

6

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

 Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses = 1 – hit ratio
 Then accessed data supplied from upper level

 11

How It Works?

Processor

L1

L2

Memory

On cache hit, CPU proceeds normally

On cache miss

Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss

 Restart instruction fetch

Data cache miss

 Complete data access
12

Hits and Misses

7

Compulsory: first time data accessed

Capacity: cache too small to hold all data of interest

Conflict: data of interest maps to same location in

cache

13

Miss Types

Mapping function
■ There are fewer cache blocks than main memory blocks, an

algorithm is needed for mapping main memory blocks into
cache blocks.

■ Need to determine which main memory block currently
occupies a cache block.

■ The choice of the mapping function dictates how the cache is
organized.

■ •Three techniques for mapping function:

 Direct mapped

 N-way set associative

 Fully associative

14

8

How do we know which particular block is stored in a
cache location?

Store block address as well as the data

Actually, only need the high-order bits

Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present

 Initially 0
15

Tags and Valid Bits

Location determined by address

Direct mapped: only one choice

 (Block number) modulo (#Blocks in cache)

16

Direct Mapped Cache

#Blocks is a power of 2

Use low-order address bits

Cache

Memory

9

Direct Mapped Cache

Block Number
7 (111)

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

00...00100100

00...00100000

00...00011100

00...00011000

00...00010100

00...00010000

00...00001100

00...00001000

00...00000100

00...00000000

230 Word Main Memory

mem[0xFF...FC]

mem[0xFF...F8]

mem[0xFF...F4]

mem[0xFF...F0]

mem[0xFF...EC]

mem[0xFF...E8]

mem[0xFF...E4]

mem[0xFF...E0]

mem[0x00...24]

mem[0x00..20]

mem[0x00..1C]

mem[0x00...18]

mem[0x00...14]

mem[0x00...10]

mem[0x00...0C]

mem[0x00...08]

mem[0x00...04]

mem[0x00...00]

23 Word Cache

Address
11...11111100

11...11111000

11...11110100

11...11110000

11...11101100

11...11101000

11...11100100

11...11100000

17

8-blocks, 1 word/block, direct mapped

Initial state

18

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

10

19

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

20

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

11

21

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

22

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

12

23

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries
Block number determines which set

 (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

24

Associative Caches

13

25

Associative Cache Examples

For a cache with 8 entries

26

Spectrum of Associativity

14

Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

27

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

2-way set associative

28

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Fully associative
 Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

15

Direct mapped
No choice

 Associative
Any invalid block first
 If all are valid, consult the replacement policy

Random
FIFO first in first out
LRU Least recently used
LFU Least frequently used

29

Replacement Policy

On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

Write through: also update memory
But makes writes take longer
Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately
 Only stalls on write if write buffer is already full

30

Write-Through

16

Alternative: On data-write hit, just update the block in

cache

Keep track of whether each block is dirty

When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
31

Write-Back

