COMPUTER ARCHITECTURE

2" Year Computer science

Chapiter 4:

Main Memory and Caches

Abdelhafid Boussouf University Center
2024-2025

Memory Challenge

=" Make memory appear as fast as processor
=|deal memory:

Fast

Cheap (inexpensive)

Large (capacity)

Review: What were Memory Elements ?

= Memories are large blocks
= A significant portion of a modern circuit is memory.

= Memories are practical tools for system design

® Programmability, reconfigurability all require memory

= Allows you to store data and work on stored data

® Not all algorithms are designed to process data as it comes, some
require data to be stored.

= Data type determines required storage

How Can We Store Data

Flip-Flops (or Latches)

= Very fast, parallel access

= Expensive (one bit costs 20+ transistors)
Static RAM

= Relatively fast, only one data word at a time

= Less expensive (one bit costs 6 transistors)
Dynamic RAM

= Slower, reading destroys content (refresh), one data word at a time, needs special
process

= Cheaper (one bit is only a transistor)

Other storage technology (hard disk, flash)
= Much slower, access takes a long time, non-volatile
= Per bit cost is lower (no transistors directly involved)

Exploit locality to make memory accesses fast

=Temporal Locality:
Locality in time
If data used recently, likely to use it again soon

How to exploit: keep recently accessed data in higher levels of
memory hierarchy

=Spatial Locality:
Locality in space
If data used recently, likely to use nearby data soon

How to exploit: when access data, bring nearby data into higher
levels of memory hierarchy too E

Taking Advantage of Locality

=*Memory hierarchy
=Store everything on disk

= Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

=" Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU

Memory Hierarchy

CPU
Internal Registers
memory
Cache memory Speed
Cost per bit
Main memory
> Latency
Magnetic Disk Bandwidt
External / seconda
nt s Optical disks (CD-ROM, CD-R, CD-R/W,
memory '< ‘ VD)
Magnetic tape

Capacity (byte) e —

emory Hierarchy

= Personal mobile b

Flash
.
Register Level 1 Level 2 Memory masory
evice L

Cache reference reference
reference reference

Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64GB

Speed: 300 ps 1ns 5-10ns 50-100 ns 25-50us

Memory
cPy

egisters

gy

Flash
o
[La ptop or Rageier. Lewi1 Leviz Lavld Mooy ory

reference
reference Cache Cache Cache reference
reference reference reference

Laptop Size: 1000 bytes 64KB 256KB 4-8MB 4-16 GB 256 GB-1T8
e S 0 p Speed: 300 ps 1ns 3-10ns 10-20ns

50-100 ns. 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2 TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns. 50-100 uS

Mamory, Disk storage

Register Level 1 Level 2 Level 3 Memory
| | S e rv e r reference Cache Cache Cache reference Disk Flash

reference reference reference

cPU

Memory

memory

si 4000 64 KB 256 KB 6-64 MB. 32-256 GB SR Tofaronee
ize: bytes 16- -

Speed: 200 ps 1ns 3-10ns 10-20ns 50-100 ns 1a41B o116 T8

5-10 ms 100-200 us

Cache Terminology

Capacity (C):

= the number of data bytes a cache stores

Block size (b):

= bytes of data brought into cache at once

Number of blocks (B = C/b):

= number of blocks in cache: B=C/b

Degree of associativity (N):

= number of blocks in a set

Number of sets (S = B/N):

= each memory address maps to exactly one cache set

How It Works?

Line

number Tag Block

y
1
, [

G=1

Block length
(K words)
(a) Cache

Memory
address
0

1
2
3

Word
length

(b) Main memory

Block 0
(K words)

Block M-1

How It Works?

=Block (aka line): unit of copying
May be multiple words

= |f accessed data is present in upper level
Hit: access satisfied by upper level i

= Hit ratio: hits/accesses
= |f accessed data is absent

Miss: block copied from lower level
= Time taken: miss penalty

Processor

= Miss ratio: misses/accesses = 1 — hit ratio Memory [T
Then accessed data supplied from upper level

*On cache hit, CPU proceeds normally

®*On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy
Instruction cache miss
= Restart instruction fetch

Data cache miss

= Complete data access

Miss Types

= Compulsory: first time data accessed
= Capacity: cache too small to hold all data of interest

= Conflict: data of interest maps to same location in

cache

12
Mapping function

m There are fewer cache blocks than main memory blocks, an
algorithm is needed for mapping main memory blocks into
cache blocks.

s Need to determine which main memory block currently
occupies a cache block.

m The choice of the mapping function dictates how the cache is
organized.

m *Three technigues for mapping function:

® Direct mapped
= N-way set associative
® Fully associative

Tags and Valid Bits

"How do we know which particular block is stored in a
cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

=What if there is no data in a location?
Valid bit: 1 = present, 0 = not present
Initially O

Direct Mapped Cache

= ocation determined by address
=Direct mapped: only one choice

(Block number) modulo (#Blocks in cache)

g = #Blocks is a power of 2
M = = Use low-order address bits
emory ><

o J N e

00001 00101 01001 01101 10001 10101 11001 11101 @

11...
11...
11...
11...
11...
11...
11...
11...

00...
00...
00...
00...
00...
00...
00...
00...
00...
00...

Address
11111100
11111000
11110100
11110000
11101100
11101000
11100100
11100000

L J

-

L J
00100100
00100000
00011100
00011000
00010100
00010000
00001100
00001000
00000100
00000000

Direct Mapped Cache

mem[OxFF...

FC]

mem[OxFF..

F8]

mem[OxFF..

F4)

mem[OxFF..

FO]

mem[OxFF...

EC]

mem[OxFF...

E8]

mem[OxFF...

E4]

mem[OxFF...

0]

mem[0x00..

24]

mem[0x00..

20]

mem[0x00..

1C]

mem[0x00..

18]

mem([0x00..

14]

mem[0x00..

10]

mem[0x00...

oC)

mem([0x00..

.08]

mem[0x00..

04]

mem([0x00..

.00]

230 Word Main Memory

23 Word Cache

Block Number
7(111)
6(110)
5(101)
4(100)
3(011)
2(010)
1(001)
0(000)

=8-blocks, 1 word/block, direct mapped

Direct Mapped Cache Example

= |nitial state

Index

Tag

Data

000

001

010

011

100

101

110

111

z|IZzZz|1Zz|z|1Zz|Zz|Z2|<

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101
110
111

Tag Data

10 Mem[10110]

ZzlI<|Zz|1Zz|z|Zz|Zz|Z2|<

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
26 11 010 Miss 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem[11010]

10 Mem[10110]

Z|I<|Zz|1Zz|Zz|X|Z2|Z2|<

10

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index \% Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

11

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem([10110]

111 N

Associative Caches

=Fully associative

Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

=n-way set associative
Each set contains n entries
Block number determines which set
= (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

12

Associative Cache Examples

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta
Tag 2 9 12 g 2
Search T Search T I Search T T I T T T | T

Spectrum of Associativity

="For a cache with 8 entries

One-way set associative
(direct mapped)
Block Tag Data

0

Two-way set associative

Set Tag Data Tag Data
0

9
2
3

~N O s W N =

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

L rrrrrrrr]

Associativity Example

=Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

=Direct mapped

Block Cache | Hit/miss Cache content after access
address | index 0 1 2 3
0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem|[O0] Mem|6]
8 0 miss Mem[8] Mem[6]

(27
Associativity Example

= 2-way set associative

Block Cache | Hit/miss Cache content after access
address | index Set 0 Set 1
0 0 miss | Mem[Q]

8 0 miss Mem[0] | Mem[8]
0 0 hit Mem[0] | Mem[8]
6 0 miss Mem|[0] | Mem[6]
8 0 miss | Mem([8] | Mem|[6]

= Fully associative

Block Hit/miss Cache content after access
address
0 miss | Mem|[0]
8 miss Mem([0] | Mem|[8]
0 hit Mem[0] | Mem[8]
6 miss Mem[0] | Mem[8] | Mem|[6]
8 hit | Mem[0] | Mem[8] | Mem[6] @

Replacement Policy

=Direct mapped
No choice
= Associative
Any invalid block first
If all are valid, consult the replacement policy
= Random
= FIFO first in first out
= LRU Least recently used
= LFU Least frequently used

Write-Through

="On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

=\Write through: also update memory

=But makes writes take longer

=Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately
= Only stalls on write if write buffer is already full

15

= Alternative: On data-write hit, just update the block in
cache
Keep track of whether each block is dirty
=»When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
31

16

