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Definitions
Definition:

A real function of a real variable is a mapping f from a set
E ⊂ R to a set F ⊂ R, written as:

f : E → F , x 7→ f (x).

Here, x is called the real variable, and f (x) is called the image
of x under f .
The domain of definition of f is the set of values x ∈ E for
which f (x) ∈ F , denoted Df .
The set of all functions from E to F is denoted as F (E ,F ).
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The graph of f is the subset Γf of the Cartesian product R× R
defined as:

Γf = {(x , f (x)) | x ∈ E}.
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Definition: (Parity of a Function)
Let f be a function from R to R.
- f is called even if ∀x ∈ Df , f (−x) = f (x), meaning the graph of
f is symmetric with respect to the y -axis.
- f is called odd if ∀x ∈ Df , f (−x) = −f (x), meaning the graph of
f is symmetric with respect to the origin.
Definition: (Periodicity of a Function) A function f is said to be
periodic if there exists a strictly positive real number T such that:

∀x ∈ Df , f (x + T ) = f (x).
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Examples:
- For f (x) = sin x or f (x) = cos x , the period is T = 2π.

- For f (x) = tan x , the period is T = π.
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- For f (x) = x − ⌊x⌋, the period is T = 1.

Figure: Source: https://www.geeksforgeeks.org/fractional-part-function/

- For f (x) = cos
(5x

2

)
, the period is T = 4π

5 .
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Remarks:
1. If f is even or odd, it suffices to study it over half its domain.
2. There exist functions that are neither even nor odd.
3. If f is periodic with period T , it suffices to study it over a single
period.
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Bounded Functions
1. A function f (x) is said to be bounded above in an interval (or
set) if there exists a constant M such that:

f (x) ≤ M for all x in the interval.

Here, M is called an upper bound for f (x).
2. Similarly, f (x) is bounded below if there exists a constant m
such that:

f (x) ≥ m for all x in the interval.

In this case, m is called a lower bound.
3. If both conditions are satisfied—i.e., there exist constants m and
M such that:

m ≤ f (x) ≤ M for all x in the interval,

then f (x) is called a bounded function. To denote that f (x) is
bounded, we can write:

|f (x)| ≤ P, P > 0.

Chapter 03: Real Functions of a Real Variable (Lecture 1)



Examples
1) For f (x) = cos(x) in the interval −∞ < x < ∞:

The function is bounded since −1 ≤ f (x) ≤ 1 for all x .
M = 1 is an upper bound, and m = −1 is a lower bound.

2) For f (x) = x3 in the interval −2 ≤ x ≤ 2:
The function is bounded because −8 ≤ f (x) ≤ 8 in this
interval.
M = 8 is an upper bound, and m = −8 is a lower bound.

3) For f (x) = 1
x2 in the interval 0 < x ≤ 2:

The function is not bounded above, as f (x) → ∞ as
x → 0+.
However, it is bounded below with f (x) ≥ 1

4 .
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Definition of Monotonic Functions
Monotonically Increasing:

A function f (x) is monotonically increasing on an interval if,
for any x1, x2 such that x1 < x2, we have:

f (x1) ≤ f (x2).

If f (x1) < f (x2) strictly for all x1 < x2, then f (x) is strictly
increasing.

Monotonically Decreasing:
A function f (x) is monotonically decreasing on an interval if,
for any x1, x2 such that x1 < x2, we have:

f (x1) ≥ f (x2).

If f (x1) > f (x2) strictly for all x1 < x2, then f (x) is strictly
decreasing.
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Examples:

Monotonically Increasing:
The function f (x) = x2 is monotonically increasing on [0,∞).
The function f (x) = x3 is strictly increasing on R.

Monotonically Decreasing:
The function f (x) = −x is strictly decreasing on R.
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Introduction to Maxima and Minima

The study of maxima and minima, or extreme values of
functions, was a key motivation for the development of
calculus in the 17th century.
Extreme values are important in both mathematical theory and
real-world applications.
They are classified into:

Relative extrema (local maxima and minima).
Absolute extrema (global maxima and minima).
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Relative Extrema

Definition:
A function f (x) has a relative maximum at c if there exists
an interval (a, b) containing c such that:

f (x) < f (c) for all x ̸= c in (a, b).

Similarly, f (x) has a relative minimum at c if:

f (x) > f (c) for all x ̸= c in (a, b).

Key Points:
Relative extrema are the "high points" (maximum) or "low
points" (minimum) within a local neighborhood.
Functions may have multiple relative extrema or none at all.
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Absolute Extrema
Definition:

A function f (x) has an absolute maximum at c if:

f (x) ≤ f (c) for all x in the domain of f .

A function f (x) has an absolute minimum at c if:

f (x) ≥ f (c) for all x in the domain of f .

Key Points:
Absolute extrema consider the entire domain of the function.
Strictly increasing or decreasing functions may have absolute
extrema at the endpoints of a closed interval.
Absolute extrema are not always unique, as in the case of
constant functions.
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Examples and Observations

Examples:
Relative extrema:

The highest point on a specific hill is a relative maximum.
The lowest point in a valley is a relative minimum.

Absolute extrema:
The tallest hill overall is the absolute maximum.
The deepest valley is the absolute minimum.

Special Cases:
Strictly increasing or decreasing functions have no relative
extrema but may have absolute extrema on closed intervals.
Constant functions have infinite absolute extrema, as all points
are maxima and minima.
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Figure: Source:Schaum’s Outlines: Advanced Calculus By Robert C.
Wrede, Murray R. Spiegel · 2011
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Limits of a Function
Definition: Let f be a real-valued function defined on a set
E ⊂ R. We say that f (x) tends toward a limit L as x approaches
x0 if, for every ε > 0, there exists δ > 0 such that:

∀x ∈ E , 0 < |x − x0| < δ =⇒ |f (x)− L| < ϵ.

This is written as:
lim
x→x0

f (x) = L.

Figure
Chapter 03: Real Functions of a Real Variable (Lecture 1)



Theorems on limits:
1. If limx→x0 f (x) = L and limx→x0 g(x) = M, then:

lim
x→x0

[f (x) + g(x)] = L+M.

2. If limx→x0 f (x) = L and limx→x0 g(x) = M, then:

lim
x→x0

[f (x) · g(x)] = L ·M.

3. If limx→x0 f (x) = L, limx→x0 g(x) = M, and M ̸= 0, then:

lim
x→x0

f (x)

g(x)
=

L

M
.
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Remark: If f (x) is continuous at x0, then:

lim
x→x0

f (x) = f (x0).

Definition: A function f (x) is said to have a limit L as x
approaches infinity if, for every ϵ > 0, there exists N > 0 such that:

∀x > N, |f (x)− L| < ϵ.

This is written as:
lim
x→∞

f (x) = L.

Theorem If f admits a limit at the point x0, then this limit is
unique.
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Proof
Suppose, for contradiction, that f admits two different limits, l1
and l2 (l1 ̸= l2). When x tends to x0, we have:

lim
x→x0

f (x) = l1 ⇐⇒

∀ϵ > 0, ∃α1 > 0,∀x ∈ I , |x − x0| < α1 =⇒ |f (x)− l1| <
ϵ

2
lim
x→x0

f (x) = l2 ⇐⇒

∀ϵ > 0, ∃α2 > 0,∀x ∈ I , |x − x0| < α2 =⇒ |f (x)− l2| <
ϵ

2
Let ϵ > 0, then:

|l1 − l2| = |(l1 − f (x)) + (f (x)− l2)|

For α = min(α1, α2), we have:

|l1 − l2| ≤ |f (x)− l1|+ |f (x)− l2| < ϵ

Thus, for all ϵ > 0 (no matter how small), it follows that l1 = l2.
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One-Sided Limits

Definition:
- f has a left-hand limit ll as x → x−0 :

lim
x→x−0

f (x) = ll ⇐⇒

∀ϵ > 0,∃α > 0,∀x ∈ I , x0 − α < x < x0 =⇒ |f (x)− ll | < ϵ

- f has a right-hand limit lr as x → x+0 :

lim
x→x+0

f (x) = lr ⇐⇒

∀ϵ > 0, ∃α > 0, ∀x ∈ I , x0 < x < x0 + α =⇒ |f (x)− lr | < ϵ
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Remarks

1 If f has a limit l as x → x0, then:

lim
x→x−0

f (x) = lim
x→x+0

f (x) = l

2 If f has a left-hand limit ll and a right-hand limit lr at x0, and
ll = lr , then:

lim
x→x0

f (x) = ll = lr

3 If ll ̸= lr , then f does not have a limit as x → x0.
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Infinity as a Limit

1

lim
x→x0

f (x) = +∞ ⇐⇒

∀A > 0,∃α > 0,∀x ∈ I , |x − x0| < α =⇒ f (x) > A

2

lim
x→x0

f (x) = −∞ ⇐⇒

∀A < 0,∃α > 0,∀x ∈ I , |x − x0| < α =⇒ f (x) < A
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Limits at Infinity

1

lim
x→+∞

f (x) = l ⇐⇒ ∀ϵ > 0,∃α > 0,∀x > α =⇒ |f (x)−l | < ϵ

2

lim
x→−∞

f (x) = l ⇐⇒ ∀ϵ > 0,∃α < 0,∀x < α =⇒ |f (x)−l | < ϵ
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Continuity

Definition: A function f (x) is said to be continuous at a point
x0 ∈ Df if:

lim
x→x0

f (x) = f (x0).

If f (x) is continuous at every point in Df , it is said to be
continuous on Df .
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Continuity

A function f (x) is said to be continuous at a point x = x0 if the
following conditions hold:

1 The limit limx→x0 f (x) exists.
2 The value f (x0) exists (i.e., f is defined at x0).
3 The limit matches the function’s value:

lim
x→x0

f (x) = f (x0).

These conditions ensure the function behaves smoothly at x0, with
no jumps, gaps, or breaks.
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Alternative Definition

A function f (x) is continuous at x0 if:

∀ϵ > 0,∃δ > 0 such that |f (x)− f (x0)| < ϵ whenever |x − x0| < δ.

This means that we can make f (x) arbitrarily close to f (x0) by
taking x sufficiently close to x0.
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Intuitive Understanding of Continuity

If f (x) is continuous at x0, the graph of f (x) near x0 can be
drawn without lifting the pencil from the paper.
If there is a gap or jump in the graph at x0, the function is not
continuous there.

In simple terms, f (x) is continuous at x0 if:

lim
x→x0

f (x) = f (x0).
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Example 1: A Discontinuous Function

Let:

f (x) =

{
x2 if x ̸= 2,
0 if x = 2.

For x ̸= 2, f (x) = x2, so limx→2 f (x) = 4.
At x = 2, f (2) = 0.
Since limx→2 f (x) ̸= f (2), f (x) is not continuous at x = 2.
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Example 2: A Continuous Function

Let f (x) = x2 for all x :
The limit limx→2 f (x) = 4.
The value of the function at x = 2 is f (2) = 4.
Since limx→2 f (x) = f (2), f (x) is continuous at x = 2.

Chapter 03: Real Functions of a Real Variable (Lecture 1)



Points of Discontinuity

Discontinuities are points where f (x) fails to be continuous.
These can occur if:

f (x) is undefined at the point (a gap),
f (x) jumps to a different value,
The left-hand and right-hand limits do not match.

For example: - In Example 1, f (x) is discontinuous at x = 2
because the limit and function value differ.

Chapter 03: Real Functions of a Real Variable (Lecture 1)



Property:
The sum, product, and quotient (where the denominator is
nonzero) of continuous functions are continuous.
Examples:
1. The function f (x) = x2 + 3x + 2 is continuous on R.
2. The function g(x) = 1

x is continuous on R \ {0}.
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