Chapter 03: Real Functions of a Real Variable (Lecture 1)

By Hocine RANDJI randji.h@centre-univ-mila.dz Abdelhafid Boussouf University Center- Mila- Algeria Institute of Science and Technology First Year Engineering Module: Analysis 1 Semester 1

Academic Year: 2024/2025

Plan

- References
- Definitions
- Bounded functions
- Definitions of Monotonic Functions
- Introduction to Maxima and Minima
- Limits of a Function
- Continuity

بالعربية:

- . (**الفصل الثاني**) . 300 ترجمة الحفيظ مقران، ديوان المطبوعات الحجامعية (**الفصل الثاني**) . In English:
 - Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 2).
 - Robert C. Wrede, Murray R. Spiegel, Schaum's Outlines: Advanced Calculus, (2011), (Chapter 3).
 - Terence Tao, Analysis 1 (3rd edition), Springer (2016).
- En français:
 - BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 4).
 - Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016), (Chapitre 3).

Definitions

Definition:

A real function of a real variable is a mapping *f* from a set
E ⊂ ℝ to a set *F* ⊂ ℝ, written as:

 $f: E \to F, \quad x \mapsto f(x).$

- Here, x is called the real variable, and f(x) is called the image of x under f.
- The domain of definition of *f* is the set of values *x* ∈ *E* for which *f*(*x*) ∈ *F*, denoted *D_f*.
- The set of all functions from E to F is denoted as F(E, F).

The graph of f is the subset Γ_f of the Cartesian product $\mathbb{R} \times \mathbb{R}$ defined as:

 $\Gamma_f = \{(x, f(x)) \mid x \in E\}.$

Chapter 03: Real Functions of a Real Variable (Lecture 1)

Definition: (Parity of a Function)

Let f be a function from \mathbb{R} to \mathbb{R} .

- f is called even if $\forall x \in D_f$, f(-x) = f(x), meaning the graph of

f is symmetric with respect to the *y*-axis.

- f is called odd if $\forall x \in D_f$, f(-x) = -f(x), meaning the graph of f is symmetric with respect to the origin.

Definition: (Periodicity of a Function) A function f is said to be periodic if there exists a strictly positive real number T such that:

 $\forall x \in D_f, f(x+T) = f(x).$

Examples:

- For $f(x) = \sin x$ or $f(x) = \cos x$, the period is $T = 2\pi$.

- For $f(x) = \tan x$, the period is $T = \pi$.

- For f(x) = x - |x|, the period is T = 1.

Figure: Source: https://www.geeksforgeeks.org/fractional-part-function/

- For
$$f(x) = \cos\left(\frac{5x}{2}\right)$$
, the period is $T = \frac{4\pi}{5}$.

Remarks:

- 1. If f is even or odd, it suffices to study it over half its domain.
- 2. There exist functions that are neither even nor odd.
- 3. If f is periodic with period T, it suffices to study it over a single period.

Bounded Functions

1. A function f(x) is said to be **bounded above** in an interval (or set) if there exists a constant M such that:

 $f(x) \leq M$ for all x in the interval.

Here, *M* is called an **upper bound** for f(x).

2. Similarly, f(x) is **bounded below** if there exists a constant *m* such that:

 $f(x) \ge m$ for all x in the interval.

In this case, *m* is called a lower bound.

3. If both conditions are satisfied—i.e., there exist constants m and M such that:

 $m \leq f(x) \leq M$ for all x in the interval,

then f(x) is called a **bounded function**. To denote that f(x) is bounded, we can write:

$$|f(x)| \leq P, \quad P > 0.$$

Examples

1) For $f(x) = \cos(x)$ in the interval $-\infty < x < \infty$:

• The function is bounded since $-1 \le f(x) \le 1$ for all x.

• M = 1 is an upper bound, and m = -1 is a lower bound.

2) For $f(x) = x^3$ in the interval $-2 \le x \le 2$:

- The function is bounded because −8 ≤ f(x) ≤ 8 in this interval.
- M = 8 is an **upper bound**, and m = -8 is a **lower bound**.
- 3) For $f(x) = \frac{1}{x^2}$ in the interval $0 < x \le 2$:
 - The function is **not bounded above**, as $f(x) \to \infty$ as $x \to 0^+$.
 - However, it is bounded below with $f(x) \ge \frac{1}{4}$.

▲□▶▲□▶▲≧▶▲≧▶ ≧ ∽0

hapter 03: Real Functions of a Real Variable (Lecture 1

Definition of Monotonic Functions

Monotonically Increasing:

 A function f(x) is monotonically increasing on an interval if, for any x₁, x₂ such that x₁ < x₂, we have:

 $f(x_1) \leq f(x_2).$

- If f(x₁) < f(x₂) strictly for all x₁ < x₂, then f(x) is strictly increasing.
- Monotonically Decreasing:
 - A function f(x) is monotonically decreasing on an interval if, for any x_1, x_2 such that $x_1 < x_2$, we have:

 $f(x_1) \geq f(x_2).$

If f(x₁) > f(x₂) strictly for all x₁ < x₂, then f(x) is strictly decreasing.

Monotonically Increasing:

- The function $f(x) = x^2$ is monotonically increasing on $[0, \infty)$.
- The function $f(x) = x^3$ is strictly increasing on \mathbb{R} .

Monotonically Decreasing:

• The function f(x) = -x is strictly decreasing on \mathbb{R} .

▲日▼▲□▼▲□▼▲□▼ ● ● ●

Chapter 03: Real Functions of a Real Variable (Lecture 1)

Introduction to Maxima and Minima

- The study of maxima and minima, or extreme values of functions, was a key motivation for the development of calculus in the 17th century.
- Extreme values are important in both mathematical theory and real-world applications.
- They are classified into:
 - Relative extrema (local maxima and minima).
 - Absolute extrema (global maxima and minima).

Relative Extrema

Definition:

• A function f(x) has a **relative maximum** at *c* if there exists an interval (a, b) containing *c* such that:

f(x) < f(c) for all $x \neq c$ in (a, b).

• Similarly, f(x) has a relative minimum at c if:

$$f(x) > f(c)$$
 for all $x \neq c$ in (a, b) .

Key Points:

- Relative extrema are the "high points" (maximum) or "low points" (minimum) within a local neighborhood.
- Functions may have multiple relative extrema or none at all.

Absolute Extrema

Definition:

• A function f(x) has an absolute maximum at c if:

 $f(x) \leq f(c)$ for all x in the domain of f.

• A function f(x) has an absolute minimum at c if:

 $f(x) \ge f(c)$ for all x in the domain of f.

Key Points:

- Absolute extrema consider the entire domain of the function.
- Strictly increasing or decreasing functions may have absolute extrema at the endpoints of a closed interval.
- Absolute extrema are not always unique, as in the case of constant functions.

Examples and Observations

Examples:

- Relative extrema:
 - The highest point on a specific hill is a relative maximum.
 - The lowest point in a valley is a relative minimum.
- Absolute extrema:
 - The tallest hill overall is the **absolute maximum**.
 - The deepest valley is the absolute minimum.

Special Cases:

- Strictly increasing or decreasing functions have no relative extrema but may have absolute extrema on closed intervals.
- Constant functions have infinite absolute extrema, as all points are maxima and minima.

Figure 3.3

Figure: Source:Schaum's Outlines: Advanced Calculus By Robert C. Wrede, Murray R. Spiegel · 2011

э

Limits of a Function

Definition: Let f be a real-valued function defined on a set $E \subset \mathbb{R}$. We say that f(x) tends toward a limit L as x approaches x_0 if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$\forall x \in E, \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

This is written as:

 $\lim_{x\to x_0}f(x)=L.$

Chapter 03: Real Functions of a Real Variable (Lecture 1)

Theorems on limits: 1. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

 $\lim_{x\to x_0} [f(x) + g(x)] = L + M.$

2. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

 $\lim_{x\to x_0} [f(x)\cdot g(x)] = L\cdot M.$

3. If $\lim_{x\to x_0} f(x) = L$, $\lim_{x\to x_0} g(x) = M$, and $M \neq 0$, then:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{L}{M}.$$

Chapter 03: Real Functions of a Real Variable (Lecture 1

Remark: If f(x) is continuous at x_0 , then:

 $\lim_{x\to x_0}f(x)=f(x_0).$

Definition: A function f(x) is said to have a limit L as x approaches infinity if, for every $\epsilon > 0$, there exists N > 0 such that:

 $\forall x > N, |f(x) - L| < \epsilon.$

This is written as:

 $\lim_{x\to\infty}f(x)=L.$

Theorem If f admits a limit at the point x_0 , then this limit is unique.

Chapter 03: Real Functions of a Real Variable (Lecture 1)

Proof

Suppose, for contradiction, that f admits two different limits, l_1 and l_2 ($l_1 \neq l_2$). When x tends to x_0 , we have:

 $\lim_{x\to x_0} f(x) = l_1 \iff$

 $\forall \epsilon > 0, \exists \alpha_1 > 0, \forall x \in I, |x - x_0| < \alpha_1 \implies |f(x) - l_1| < \frac{\epsilon}{2}$ $\lim_{x \to x_0} f(x) = l_2 \iff$

$$\forall \epsilon > 0, \exists \alpha_2 > 0, \forall x \in I, |x - x_0| < \alpha_2 \implies |f(x) - l_2| < \frac{\epsilon}{2}$$

Let $\epsilon > 0$, then:

$$|l_1 - l_2| = |(l_1 - f(x)) + (f(x) - l_2)|$$

For $\alpha = \min(\alpha_1, \alpha_2)$, we have:

$$|l_1 - l_2| \le |f(x) - l_1| + |f(x) - l_2| < \epsilon$$

Thus, for all $\epsilon > 0$ (no matter how small), it follows that $l_1 = l_2$.

One-Sided Limits

Definition:

- f has a left-hand limit l_l as $x \to x_0^-$:

 $\lim_{x\to x_0^-} f(x) = I_I \iff$

 $\forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, x_0 - \alpha < x < x_0 \implies |f(x) - I_l| < \epsilon$

- f has a right-hand limit I_r as $x \to x_0^+$:

$$\lim_{x\to x_0^+} f(x) = I_r \iff$$

 $\forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, x_0 < x < x_0 + \alpha \implies |f(x) - I_r| < \epsilon$

1 If f has a limit I as $x \to x_0$, then:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = I$$

② If f has a left-hand limit I_l and a right-hand limit I_r at x_0 , and $I_l = I_r$, then:

 $\lim_{x\to x_0} f(x) = I_l = I_r$

If $I_l \neq I_r$, then f does not have a limit as $x \to x_0$.

Chapter 03: Real Functions of a Real Variable (Lecture 1

1

2

$$\lim_{x \to x_0} f(x) = +\infty \iff$$
$$\forall A > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) > A$$

$$\lim_{x\to x_0} f(x) = -\infty \iff$$

 $\forall A < 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) < A$

《曰》《聞》《臣》《臣》

2

1

$$\lim_{x \to +\infty} f(x) = I \iff \forall \epsilon > 0, \exists \alpha > 0, \forall x > \alpha \implies |f(x) - I| < \epsilon$$

2

 $\lim_{x \to -\infty} f(x) = I \iff \forall \epsilon > 0, \exists \alpha < 0, \forall x < \alpha \implies |f(x) - I| < \epsilon$

《曰》《聞》《臣》《臣》

æ

Definition: A function f(x) is said to be continuous at a point $x_0 \in D_f$ if:

 $\lim_{x\to x_0} f(x) = f(x_0).$

If f(x) is continuous at every point in D_f , it is said to be continuous on D_f .

A function f(x) is said to be **continuous** at a point $x = x_0$ if the following conditions hold:

- The limit $\lim_{x\to x_0} f(x)$ exists.
- 2 The value $f(x_0)$ exists (i.e., f is defined at x_0).
- Intersection of the section of th

 $\lim_{x\to x_0}f(x)=f(x_0).$

These conditions ensure the function behaves smoothly at x_0 , with no jumps, gaps, or breaks.

A function f(x) is continuous at x_0 if:

 $\forall \epsilon > 0, \exists \delta > 0 \text{ such that } |f(x) - f(x_0)| < \epsilon \text{ whenever } |x - x_0| < \delta.$

This means that we can make f(x) arbitrarily close to $f(x_0)$ by taking x sufficiently close to x_0 .

Intuitive Understanding of Continuity

- If f(x) is continuous at x₀, the graph of f(x) near x₀ can be drawn without lifting the pencil from the paper.
- If there is a gap or jump in the graph at x₀, the function is not continuous there.

In simple terms, f(x) is continuous at x_0 if:

 $\lim_{x\to x_0} f(x) = f(x_0).$

Chapter 03: Real Functions of a Real Variable (Lecture 1

Example 1: A Discontinuous Function

Let:

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 2, \\ 0 & \text{if } x = 2. \end{cases}$$

- For $x \neq 2$, $f(x) = x^2$, so $\lim_{x \to 2} f(x) = 4$.
- At x = 2, f(2) = 0.
- Since $\lim_{x\to 2} f(x) \neq f(2)$, f(x) is not continuous at x = 2.

Let $f(x) = x^2$ for all x:

- The limit $\lim_{x\to 2} f(x) = 4$.
- The value of the function at x = 2 is f(2) = 4.
- Since $\lim_{x\to 2} f(x) = f(2)$, f(x) is continuous at x = 2.

Discontinuities are points where f(x) fails to be continuous. These can occur if:

- f(x) is undefined at the point (a gap),
- f(x) jumps to a different value,
- The left-hand and right-hand limits do not match.

For example: - In Example 1, f(x) is discontinuous at x = 2 because the limit and function value differ.

Property:

The sum, product, and quotient (where the denominator is nonzero) of continuous functions are continuous. **Examples:**

- 1. The function $f(x) = x^2 + 3x + 2$ is continuous on \mathbb{R} .
- 2. The function $g(x) = \frac{1}{x}$ is continuous on $\mathbb{R} \setminus \{0\}$.