Chapter 03: Real Functions of a Real Variable (Lecture 1)

By Hocine RANDJI randji.h@centre-univ-mila.dz Abdelhafid Boussouf University Center- Mila- Algeria Institute of Science and Technology First Year Engineering Module: Analysis 1 Semester 1

Academic Year: 2024/2025

[Chapter 03: Real Functions of a Real Variable](#page-35-0) (Lecture 1)

 Ω

Plan

- **•** References
- **•** Definitions
- **Bounded functions**
- Definitions of Monotonic Functions
- Introduction to Maxima and Minima

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

つくい

 \leftarrow

- Limits of a Function
- Continuity

: -
4 بالعربي<mark>ة</mark> $\ddot{\cdot}$ K .

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

 \circ

XY« éËñÊm× áK PAÖ ß ð ðPYËAK. Q » Y K ¹ ÉJ j JË@ ,I. J .k áK . , YÓAg AK . AK . • . (ú GA JË@ É ®Ë@) éJ ªÓAm . Ì'@ HA«ñJ .¢ÖÏ@ à@ñK X , à@Q ®Ó ¡J ®mÌ'@ éÔg . Q K ³⁰⁰ In English:

- Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 2) .
- Robert C. Wrede, Murray R. Spiegel, Schaum's Outlines: Advanced Calculus, (2011), (Chapter 3).
- Terence Tao, Analysis 1 (3rd edition), Springer (2016).
- En français:
	- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 4).
	- **Benzine BENZINE, Analyse réelle cours et exercices corriges,** première année maths et informatique ([20](#page-1-0)[16\)](#page-3-0)[,](#page-1-0) [\(](#page-2-0)[C](#page-3-0)[ha](#page-0-0)[pi](#page-35-0)[tre](#page-0-0) [3](#page-35-0)[\)](#page-0-0)[.](#page-35-0)

Definitions

Definition:

 \bullet A real function of a real variable is a mapping f from a set $E \subset \mathbb{R}$ to a set $F \subset \mathbb{R}$, written as:

 $f : E \to F$, $x \mapsto f(x)$.

- Here, x is called the real variable, and $f(x)$ is called the image of x under f .
- The domain of definition of f is the set of values $x \in E$ for which $f(x) \in F$, denoted D_f .
- The set of all functions from E to F is denoted as $F(E, F)$.

The graph of f is the subset Γ_f of the Cartesian product $\mathbb{R} \times \mathbb{R}$ defined as:

 $\Gamma_f = \{(x, f(x)) \mid x \in E\}.$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

Definition: (Parity of a Function)

Let f be a function from $\mathbb R$ to $\mathbb R$.

- f is called even if $\forall x \in D_f, \ f(-x) = f(x)$, meaning the graph of

f is symmetric with respect to the y -axis.

- f is called odd if $\forall x \in D_f, \ f(-x) = -f(x)$, meaning the graph of f is symmetric with respect to the origin.

Definition: (Periodicity of a Function) A function f is said to be periodic if there exists a strictly positive real number T such that:

 $\forall x \in D_f$, $f(x+T) = f(x)$.

Examples:

- For $f(x) = \sin x$ or $f(x) = \cos x$, the period is $T = 2\pi$.

- For $f(x) = \tan x$, the period is $T = \pi$.

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

- For $f(x) = x - |x|$, the period is $T = 1$.

Figure: Source: https://www.geeksforgeeks.org/fractional-part-function/

- For $f(x) = \cos\left(\frac{5x}{2}\right)$ $(\frac{5x}{2})$, the period is $\mathcal{T} = \frac{4\pi}{5}$ $rac{1\pi}{5}$.

- ◆ 伊 ▶ → 君 ▶ → 君 ▶ →

目

 Ω

Remarks:

- 1. If f is even or odd, it suffices to study it over half its domain.
- 2. There exist functions that are neither even nor odd.
- 3. If f is periodic with period \overline{T} , it suffices to study it over a single period.

Bounded Functions

1. A function $f(x)$ is said to be **bounded above** in an interval (or set) if there exists a constant M such that:

 $f(x) < M$ for all x in the interval.

Here, M is called an upper bound for $f(x)$.

2. Similarly, $f(x)$ is bounded below if there exists a constant m such that:

 $f(x) \geq m$ for all x in the interval.

In this case, m is called a lower bound.

3. If both conditions are satisfied—i.e., there exist constants m and M such that:

 $m \le f(x) \le M$ for all x in the interval,

then $f(x)$ is called a **bounded function**. To denote that $f(x)$ is bounded, we can write:

$$
|f(x)|\leq P, \quad P>0.
$$

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

Examples

1) For $f(x) = \cos(x)$ in the interval $-\infty < x < \infty$:

• The function is bounded since $-1 \le f(x) \le 1$ for all x.

 \bullet $M = 1$ is an upper bound, and $m = -1$ is a lower bound.

2) For $f(x) = x^3$ in the interval $-2 \le x \le 2$:

- The function is bounded because $-8 \le f(x) \le 8$ in this interval.
- \bullet $M = 8$ is an upper bound, and $m = -8$ is a lower bound.
- 3) For $f(x) = \frac{1}{x^2}$ in the interval $0 < x \le 2$:
	- The function is not bounded above, as $f(x) \to \infty$ as $x \to 0^+$.
	- However, it is bounded below with $f(x) \geq \frac{1}{4}$ $\frac{1}{4}$.

メロメ メ御 トメ 君 トメ 君 トー 准 299

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

Definition of Monotonic Functions

Monotonically Increasing:

• A function $f(x)$ is monotonically increasing on an interval if, for any x_1, x_2 such that $x_1 < x_2$, we have:

 $f(x_1) \leq f(x_2)$.

- If $f(x_1) < f(x_2)$ strictly for all $x_1 < x_2$, then $f(x)$ is strictly increasing.
- Monotonically Decreasing:
	- A function $f(x)$ is monotonically decreasing on an interval if, for any x_1, x_2 such that $x_1 < x_2$, we have:

 $f(x_1) \geq f(x_2)$.

If $f(x_1) > f(x_2)$ strictly for all $x_1 < x_2$, then $f(x)$ is strictly decreasing.

Monotonically Increasing:

- The function $f(x) = x^2$ is monotonically increasing on $[0, \infty)$.
- The function $f(x) = x^3$ is strictly increasing on R.

Monotonically Decreasing:

• The function $f(x) = -x$ is strictly decreasing on R.

つくい

メロト メタト メミト メミト 一番 2990

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

- The study of maxima and minima, or extreme values of functions, was a key motivation for the development of calculus in the 17th century.
- Extreme values are important in both mathematical theory and real-world applications.
- They are classified into:
	- Relative extrema (local maxima and minima).
	- Absolute extrema (global maxima and minima).

 Ω

Relative Extrema

Definition:

A function $f(x)$ has a relative maximum at c if there exists an interval (a, b) containing c such that:

 $f(x) < f(c)$ for all $x \neq c$ in (a, b) .

• Similarly, $f(x)$ has a relative minimum at c if:

$$
f(x) > f(c) \quad \text{for all } x \neq c \text{ in } (a, b).
$$

Key Points:

- Relative extrema are the "high points" (maximum) or "low points" (minimum) within a local neighborhood.
- Functions may have multiple relative extrema or none at all.

Absolute Extrema

Definition:

• A function $f(x)$ has an absolute maximum at c if:

 $f(x) < f(c)$ for all x in the domain of f.

A function $f(x)$ has an absolute minimum at c if:

 $f(x) > f(c)$ for all x in the domain of f.

Key Points:

- Absolute extrema consider the entire domain of the function.
- Strictly increasing or decreasing functions may have absolute extrema at the endpoints of a closed interval.
- Absolute extrema are not always unique, as in the case of constant functions.

Examples and Observations

Examples:

- **•** Relative extrema:
	- The highest point on a specific hill is a relative maximum.
	- The lowest point in a valley is a relative minimum.
- Absolute extrema:
	- **•** The tallest hill overall is the **absolute maximum**.
	- The deepest valley is the absolute minimum.

Special Cases:

- Strictly increasing or decreasing functions have no relative extrema but may have absolute extrema on closed intervals.
- Constant functions have infinite absolute extrema, as all points are maxima and minima.

Figure 3.3

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

メロメ メ御 ドメ きょ メ きょう

G.

 299

Figure: Source:Schaum's Outlines: Advanced Calculus By Robert C. Wrede, Murray R. Spiegel · 2011

Limits of a Function

Definition: Let f be a real-valued function defined on a set $E \subset \mathbb{R}$. We say that $f(x)$ tends toward a limit L as x approaches x_0 if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$
\forall x \in E, \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.
$$

This is written as:

 $\lim_{x\to x_0} f(x) = L.$

Theorems on limits: 1. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

 $\lim_{x \to x_0} [f(x) + g(x)] = L + M.$

2. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

 $\lim_{x\to x_0}[f(x)\cdot g(x)]=L\cdot M.$

3. If $\lim_{x\to x_0} f(x) = L$, $\lim_{x\to x_0} g(x) = M$, and $M \neq 0$, then:

$$
\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{L}{M}.
$$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

母→ イヨ→ イヨ→ ニヨ

 QQ

Remark: If $f(x)$ is continuous at x_0 , then:

 $\lim_{x\to x_0} f(x) = f(x_0).$

Definition: A function $f(x)$ is said to have a limit L as x approaches infinity if, for every $\epsilon > 0$, there exists $N > 0$ such that:

 $\forall x > N,$ $|f(x) - L| < \epsilon$.

This is written as:

 $\lim_{x\to\infty}f(x)=L.$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

 200

Theorem If f admits a limit at the point x_0 , then this limit is unique.

Proof

Suppose, for contradiction, that f admits two different limits, l_1 and l_2 ($l_1 \neq l_2$). When x tends to x_0 , we have:

 $\lim_{x \to x_0} f(x) = l_1 \iff$

 $\forall \epsilon > 0, \exists \alpha_1 > 0, \forall x \in I, |x - x_0| < \alpha_1 \implies |f(x) - f_1| < \frac{\epsilon}{2}$ 2 $\lim_{x \to x_0} f(x) = l_2 \iff$

$$
\forall \epsilon > 0, \exists \alpha_2 > 0, \forall x \in I, |x - x_0| < \alpha_2 \implies |f(x) - f_2| < \frac{\epsilon}{2}
$$

Let $\epsilon > 0$, then:

$$
|l_1 - l_2| = |(l_1 - f(x)) + (f(x) - l_2)|
$$

For $\alpha = \min(\alpha_1, \alpha_2)$, we have:

$$
|l_1 - l_2| \le |f(x) - l_1| + |f(x) - l_2| < \epsilon
$$

Thus, [fo](#page-22-0)r all $\epsilon > 0$ $\epsilon > 0$ $\epsilon > 0$ (no matter ho[w](#page-22-0) small), it follow[s](#page-23-0) [t](#page-24-0)[hat](#page-0-0) $l_1 = l_2$ $l_1 = l_2$ [.](#page-0-0) R°

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

Definition:

- f has a left-hand limit l_l as $x \to x_0^-$:

lim $x \rightarrow x_0^$ $f(x) = l_1 \iff$

 $\forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, x_0 - \alpha < x < x_0 \implies |f(x) - f_i| < \epsilon$

- f has a right-hand limit l_r as $x \to x_0^+$:

$$
\lim_{x\to x_0^+}f(x)=I_r\iff
$$

 $\forall \epsilon > 0, \exists \alpha > 0, \forall \mathsf{x} \in I, \, \mathsf{x}_0 < \mathsf{x} < \mathsf{x}_0 + \alpha \implies |f(\mathsf{x}) - \mathsf{I_r}| < \epsilon$

 Ω

1 If f has a limit l as $x \to x_0$, then:

$$
\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = I
$$

2 If f has a left-hand limit I_1 and a right-hand limit I_r at x_0 , and $l_l = l_r$, then:

 $\lim_{x\to x_0} f(x) = I_1 = I_r$

3 If $l_l \neq l_r$, then f does not have a limit as $x \to x_0$.

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

向 ▶ (ヨ) (ヨ)

 \bullet

2

 $\lim_{x \to x_0} f(x) = +\infty \iff$ $\forall A > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) > A$ $l' = r \ell$ $f = \frac{1}{2}$

$$
\lim_{x \to x_0} r(x) = -\infty \iff
$$

\n
$$
\forall A < 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) < A
$$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

∢ロト ∢母 ト ∢ 君 ト ∢ 君 トー

 299

准

\bullet

$$
\lim_{x \to +\infty} f(x) = 1 \iff \forall \epsilon > 0, \exists \alpha > 0, \forall x > \alpha \implies |f(x) - l| < \epsilon
$$

2

$$
\lim_{x \to -\infty} f(x) = 1 \iff \forall \epsilon > 0, \exists \alpha < 0, \forall x < \alpha \implies |f(x) - l| < \epsilon
$$

すロト (御) すきト (重) [Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

重

Definition: A function $f(x)$ is said to be continuous at a point $x_0 \in D_f$ if:

 $\lim_{x\to x_0} f(x) = f(x_0).$

If $f(x)$ is continuous at every point in D_f , it is said to be continuous on D_f .

 Ω

A function $f(x)$ is said to be **continuous** at a point $x = x_0$ if the following conditions hold:

- **1** The limit $\lim_{x\to x_0} f(x)$ exists.
- **2** The value $f(x_0)$ exists (i.e., f is defined at x_0).
- **3** The limit matches the function's value:

 $\lim_{x\to x_0} f(x) = f(x_0).$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

 200

These conditions ensure the function behaves smoothly at x_0 , with no jumps, gaps, or breaks.

A function $f(x)$ is continuous at x_0 if:

 $\forall \epsilon > 0, \exists \delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$.

This means that we can make $f(x)$ arbitrarily close to $f(x_0)$ by taking x sufficiently close to x_0 .

Intuitive Understanding of Continuity

- If $f(x)$ is continuous at x_0 , the graph of $f(x)$ near x_0 can be drawn without lifting the pencil from the paper.
- If there is a gap or jump in the graph at x_0 , the function is not continuous there.

In simple terms, $f(x)$ is continuous at x_0 if:

 $\lim_{x\to x_0} f(x) = f(x_0).$

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

つくい

Example 1: A Discontinuous Function

Let:

$$
f(x) = \begin{cases} x^2 & \text{if } x \neq 2, \\ 0 & \text{if } x = 2. \end{cases}
$$

- For $x \neq 2$, $f(x) = x^2$, so $\lim_{x \to 2} f(x) = 4$.
- At $x = 2$, $f(2) = 0$.
- Since $\lim_{x\to 2} f(x) \neq f(2)$, $f(x)$ is not continuous at $x = 2$.

[Chapter 03: Real Functions of a Real Variable](#page-0-0) (Lecture 1)

Let $f(x) = x^2$ for all x:

- The limit $\lim_{x\to 2} f(x) = 4$.
- The value of the function at $x = 2$ is $f(2) = 4$.
- Since $\lim_{x\to 2} f(x) = f(2)$, $f(x)$ is continuous at $x = 2$.

Discontinuities are points where $f(x)$ fails to be continuous. These can occur if:

- $f(x)$ is undefined at the point (a gap),
- \bullet $f(x)$ jumps to a different value,
- The left-hand and right-hand limits do not match.

For example: - In Example 1, $f(x)$ is discontinuous at $x = 2$ because the limit and function value differ.

Property:

The sum, product, and quotient (where the denominator is nonzero) of continuous functions are continuous. Examples:

- 1. The function $f(x) = x^2 + 3x + 2$ is continuous on R.
- 2. The function $g(x) = \frac{1}{x}$ is continuous on $\mathbb{R} \setminus \{0\}.$

 Ω