### Lesson 08 : Chromosomal Mutations

Chromosomal mutations are major alterations affecting the structure or number of chromosomes in a cell. Unlike point genetic mutations that impact one or more nucleotides within a gene, chromosomal mutations involve large DNA segments or even entire chromosomes. They can have dramatic effects on the phenotype and are often the cause of severe genetic diseases.

### I. Types of Chromosomal Mutations

Chromosomal mutations are divided into two main categories: structural chromosomal mutations and numerical chromosomal mutations.

### **1. Structural Chromosomal Mutations**

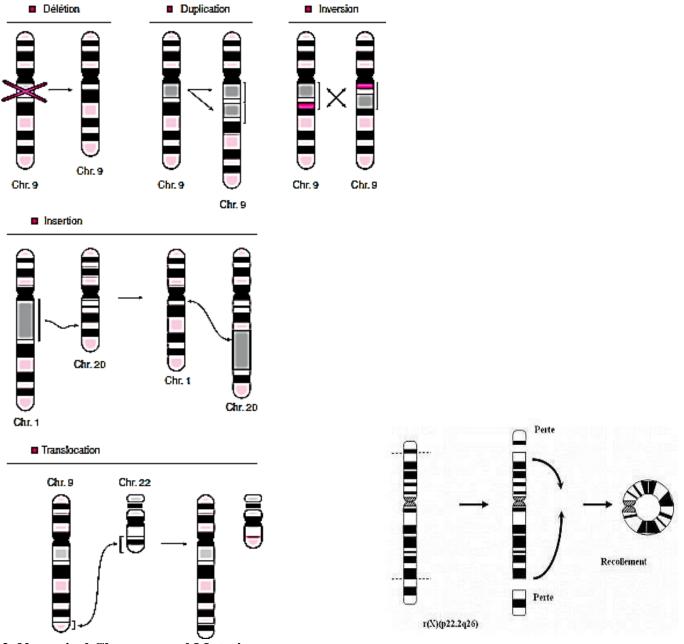
These mutations alter the internal structure of one or more chromosomes. They include:

### • Deletions

Loss of a chromosome segment. This can lead to the loss of several genes, potentially causing lethality or severe diseases such as Cri-du-chat syndrome.

### • Duplications

A chromosome segment is duplicated, resulting in an extra copy of genes in that region. This may lead to gene overexpression and disorders.


### Inversions

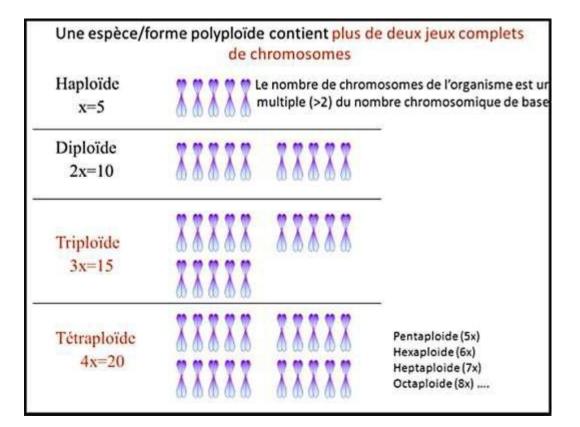
A chromosome segment is flipped and reintegrated into the chromosome. This can disrupt genes at the breakpoints or within the inversion, affecting their function.

### • Translocations

A chromosome segment is transferred to another non-homologous chromosome. There are two main types:

- **Reciprocal translocations:** Exchange of segments between two non-homologous chromosomes.
- **Robertsonian translocations:** Fusion of two acrocentric chromosomes (chromosomes with very short p arms) at the centromere.




# 2. Numerical Chromosomal Mutations

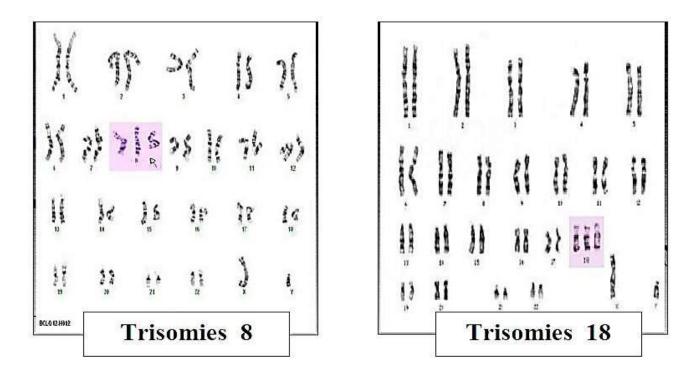
These mutations affect the total number of chromosomes in an organism. They include:

# • Euploidy

Numerical variations that affect the entire chromosome set equally (each chromosome undergoes the same numerical change). Two types of euploidy are:

- Monoploidy (Haploidy): The basic chromosomal number is represented once (n).
- Polyploidy: The basic chromosomal number is represented multiple times. Onethird of angiosperms (flowering plants) have more than two sets of chromosomes. Types include:
  - **Diploidy:** Two sets of chromosomes (2n), common in most animals and complex multicellular organisms.
  - **Triploidy:** Three sets of chromosomes (3n).
  - **Tetraploidy:** Four sets of chromosomes (4n).




# • Aneuploidy

Numerical chromosomal variations that do not equally affect all chromosomes. Types include:

- Monosomic: 2n 1
- Trisomic: 2n + 1
- Nullisomic: 2n 2, usually lethal in diploids.
- $\circ$  Tetrasomic: 2n + 2

# • Polyploidies

The presence of additional chromosome sets. This phenomenon is more common in plants than in animals.



# **Mehanisms of Chromosomal Mutations**

Chromosomal mutations may arise through various mechanisms, including:

# • Errors during meiosis

- Chromosomal nondisjunction: During meiosis, homologous chromosomes or sister chromatids fail to separate properly, leading to abnormal chromosome distribution in daughter cells.
- Errors during during DNA ceplication can lead to deletions, duplications, or inversions.
  Abnormal reciprocal exchanges between non-homologous chromosomes may occur, resulting in translocations.
- Exposure to mutagenic agents Physical (radiation) or chemical agents can cause chromosome breaks, leading to structural mutations

### **Consequences of Chromosomal Mutations**

The effects of chromosomal mutations depend on the type of mutation and the genes affected. Potential consequences include:

# MajorgeneticdisruptionsLoss or duplication of essential genes may result in developmental disorders, congenitalmalformations, or severe diseases such as certain cancers (e.g., chronic myeloidleukemia caused by a translocation between chromosomes 9 and 22, creating thePhiladelphia chromosome).

# • Fertility

•

Translocations may cause fertility problems due to the inability of altered chromosomes to properly pair during meiosis.

# Chromosomal

# Chromosomal mutations underlie many genetic syndromes, including:

- **Down syndrome (Trisomy 21):** Presence of an extra chromosome 21.
- Klinefelter syndrome (XXY): Presence of an extra X chromosome in males.
- Turner syndrome (XO): Absence of one X chromosome in females.

# • Cancers

Some chromosomal mutations are directly associated with cancer development. For instance, the translocation between chromosomes 8 and 14 is linked to Burkitt lymphoma.

### issues

syndromes