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INTRODUCTION

This course covers those topics necessary for a clear understanding of the qualitative theory of ordinary

differential equations and the concept of a dynamical system. It is written for ferst yers master students.

It begins with a study of linear systems of ordinary differential equations, a topic already familiar to

the student who has completed a first course in differential equations. An efficient method for solving any

linear system of ordinary differential equations is presented in Chapter 1. The major part of this course

is devoted to a study of nonlinear systems of ordinary differential equations and dynamical systems.

Since most nonlinear differential equations cannot be solved, this course focuses on the qualitative or

geometrical theory of nonlinear systems of differential equations originated by Henri Poincarc in his

work on differential equations at the end of the nineteenth century as well as on the functional properties

inherent in the solution set of a system of nonlinear differential equations embodied in the more recent

concept of a dynamical system. Our primary goal is to describe the qualitative behavior of the solution

set of a given system of differential equations including the invariant sets and limiting behavior of

the dynamical system or flow defined by the system of differential equations. In order to achieve this

goal, it is first necessary to develop the local theory for nonlinear systems. This is done in Chapter 2

which includes the fundamental local existence-uniqueness theorem, the Hartman-Grobman Theorem

and the Stable Manifold Theorem. These latter two theorems establish that the qualitative behavior of

the solution set of a nonlinear system of ordinary differential equations near an equilibrium point is

typically the same as the qualitative behavior of the solution set of the corresponding linearized system

near the equilibrium point.
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CHAPTER 1

CONTINUOUS DYNAMICAL SYSTEMS

1.1 Dynamical Systems

Dynamics is primarily the study of the time-evolutionary process and the corresponding system of

equations is known as dynamical system. Generally, a system of n first-order differential equations in

the space R∗ is called a dynamical system of dimension n which determines the time behavior of evo-

lutionary process. Evolutionary processes may possess the properties of determinacy/non-determinacy,

finite/infinite dimensionality, and differentiability. A process is called deterministic if its entire future

course and its entire past are uniquely determined by its state at the present time. Otherwise, the pro-

cess is called nondeterministic. However, the process may be semi-deterministic (determined, but not

uniquely). In classical mechanics the motion of a system whose future and past are uniquely determined

by the initial positions and the initial velocities is an example of a deterministic dynamical system. The

evolutionary process may describe, viz. (i) a continuous-time process and (ii) a discrete-time process.

The continuous-time process is represented by differential equations, whereas the discrete-time process

is by difference equations (or maps). The continuous-time dynamical systems may be described mathe-

matically as follows:

Let x = x(t) ∈ Rn, t ∈ I ⊆ R be the vector representing the dynamics of a continuous system (continuous-

time system). The mathematical representation of the system may be written as

dx
dt

= ẋ = f (x, t) (1.1)

5



Continuous Dynamical Systems

where f (x, t) is a sufficiently smooth function defined on some subset U ⊂ Rn
× R. Schematically, this

can be shown as

Rn
(state space)

× R
(time)

= Rn+1

(space of motions)

The variable t is usually interpreted as time and the function f (x, t) is generally nonlinear. The time

interval may be finite, semi-finite or infinite. On the other hand, the discrete system is related to a

discrete map (given only at equally spaced points of time) such that from a point x0, one can obtain a

point x1 which in turn maps into x2, and so on. In other words, xn+1 = 1 (xn) = 1
(
1 (xn−1)

)
, etc. This is

also written in the form xn+1 = 1 (xn) = 12 (xn−1) = · · · . The discrete system will be discussed in the later

course .

If the right-hand side of Eq.1.1 is explicitly time independent then the system is called autonomous.

The trajectories of such a system do not change in time. On the other hand, if the right-hand side of Eq.

1.1 has explicit dependence on time then the system is called nonautonomous.

An n-dimensional nonautonomous system can be converted into autonomous form by introducing a

new dependent variable xn+1 such that xn+1 = t. In general, the solution of Eq. 1.1 is difficult or sometimes

impossible to obtain when the function f (x, t) is nonlinear, except in some special cases. Examples of

autonomous and nonautonomous systems are given below.

(i) Autonomous systems

(a) ẍ + αẋ + βx = 0, α, β > 0. This is a damped linear harmonic oscillator. The parameters α and β are,

respectively, the strength of damping and the strength of linear restoring force.

(b) ẍ + ω2 sin x = 0, ω =
√
1/L.g is the gravitational acceleration, L the string length. This is a simple

undamped nonlinear oscillator (pendulum).

(c)
ẋ = αx − βxy

ẏ = −γy + δxy

. . This is the well-known Lotka-Volterra predator-prey model, where α, β, γ, δ are

all positive constants.

(d) ẍ − µ
(
1 − x2

)
ẋ + βx = 0, µ > 0. This is the well-known van der Pol oscillator.

(ii) Nonautonomous systems

(a) ẍ + αẋ + βx = f cosωt, α, β > 0. This is an example of linear oscillator with external time-dependent

force. f and ω are the amplitude and frequency of driving force, respectively.

(b) ẍ + αẋ +ω2
0x + βx3 = f sinωt. This is a Duffing nonlinear oscillator with cubic restoring force. α is the

strength of damping, ω0 is the natural frequency and β is the strength of the nonlinear restoring force.

(c) ẍ − µ
(
1 − x2

)
ẋ + βx = f cosωt, µ > 0. This is a van der Pol nonlinear forced oscillator.

(d) ẍ − µ
(
1 − x2

)
ẋ + ω2

0x + βx3 = f cosωx. This is a Duffing-van der Pol nonlinear forced oscillator.
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Continuous Dynamical Systems

1.2 Flows

The time-evolutionary process may be described as a flow of a vector field.

Generally, flow is frequently used for discussing the dynamics as a whole rather than the evolution of a

system at a particular point. The solution x(t) of a system ẋ = f (x) which satisfies x (t0) = x0 gives the past

(t < t0) and future (t > t0) evolutions of the system. Mathematically, the flow is defined byφt(x) : U→ Rn

where φt(x) = φ(t, x) is a smooth vector function of x ∈ U ⊆ Rn and t ∈ I ⊆ R satisfying the equation

d
dt
φt(x) = f

(
φt(x)

)
for all t such that the solution through x exists and φ(0, x) = x. The flow φt(x) satisfies the following

properties:

(a) φo = Id,

(b) φt+s = φt ◦ φs.

Some flows may also satisfy the property (c)

φ(t + s, x) = φ(t, φ(s, x)) = φ(s, φ(t, x)) = φ(s + t, x).

Flows in R : Consider a one-dimensional autonomous system represented by ẋ = f (x), x ∈ R. We

can imagine that a fluid is flowing along the real line with local velocity f (x). This imaginary fluid is

called the phase fluid and the real line is called the phase line.

For solution of the system ẋ = f (x) starting from an arbitrary initial position x0, we place an imaginary

particle, called a phase point, at x0 and watch how it moves along with the flow in phase line in varying

time t. As time goes on, the phase point (x, t) in the one-dimensional system ẋ = f (x) with x(0) = x0

moves along the x-axis according to some function φ (t, x0). The function φ (t, x0) is called the trajectory

for a given initial state x0, and the set
{
φ (t, x0) | t ∈ I ⊆ R

}
is the orbit of x0 ∈ R. The set of all qualitative

trajectories of the system is called phase portrait.

Flows inR2 : Consider a two-dimensional system represented by the following equations ẋ = f (x, y), ẏ =

1(x, y), (x, y) ∈ R2. An imaginary fluid particle flows in the planeR2, known as phase plane of the system.

The succession of states given parametrically by x = x(t), y = y(t) trace out a curve through some initial

point P
(
x (t0) , y (t0)

)
is called a phase path.

The set
{
φ (t, x0) | t ∈ I ⊆ R

}
is the orbit of x inR2. There are an infinite number of trajectories that would

fill the phase plane when they are plotted. But the qualitative behavior can be determined by plotting a

few trajectories with different initial conditions. The phase portrait displays how the qualitative behavior

of a system is changing as x and y varies with time t. An orbit is called periodic if x(t + p) = x(t) for some

p > 0, for all t. The smallest integer p for which the relation is satisfied is called the prime period of the
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Continuous Dynamical Systems

orbit. Flows in R cannot have oscillatory or closed path.

Flows inRn : Let us now define an autonomous system representing n ordinary differential equations

as
ẋ1 = f1 (x1, x2, . . . , xn)

ẋ2 = f2 (x1, x2, . . . , xn)
...

ẋn = fn (x1, x2, . . . , xn)


which can also be written in symbolic notation as ẋ = f (x), where x = (x1, x2, . . . , xn) and f =

(
f1, f2, . . . , fn

)
.

The solution of this system with the initial condition x(0) = x0 can be thought as a continuous curve in

the phase space Rn parameterized by time t ∈ I ⊆ R.

So the set of all states of the evolutionary process is represented by an n-valued vector field in Rn. The

solutions of the system with different initial conditions describe a family of phase curves in the phase

space, called the phase portrait of the system. The vector field f (x) is everywhere tangent to these curves

and their orientation is directed by the direction of the tangent vector of f (x).

1.3 Evolution

Consider a system ẋ = f (x), x ∈ Rn with initial conditions x (t0) = x0. Let E ⊂ Rn be an open set and

f ∈ C1(E). For x0 ∈ E, let φ (t, x0) be a solution of the above system on the maximum interval of existence

I (x0) ⊂ R. The mapping φt : Rn
→ Rn defined by φt(x0) = φ(t, x0) is known as evolution operator of the

system.

The linear flow for the system ẋ = Ax with x (t0) = x0, is defined by φt : Rn
→ Rn and φt = eAt,

the exponential matrix. The mappings φt for both linear and nonlinear systems satisfy the following

properties:

(i) φ0(x) = x

(ii) φs

(
φt(x)

)
= φs+t(x),∀s, t ∈ R

(iii) φt

(
φ−t(x)

)
= φ−t

(
φt(x)

)
= x,∀t ∈ R

In general a dynamical system may be viewed as group of nonlinear / linear operators evolving as{
φt(x), t ∈ R, x ∈ Rn

}
. The following dynamical group properties hold good:

(i) φtφs ∈
{
φt(x), t ∈ R, x ∈ Rn

}
(Closure property)

(ii) φt

(
φsφr

)
= (φtφs)φr (Associative property)

(iii) φ0(x) = x, φ0 being the Identity operator.

(iv) φtφ−t = φ−tφt = φ0, where φ−t is the Inverse of φt.

For some cases the flow satisfies the commutative property φtφs = φsφt.
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Continuous Dynamical Systems

1.4 Fixed Points of a System

The notion of fixed point is important in analyzing the local behavior of a system. The fixed point is

nothing but a constant or equilibrium or invariant solution of a system. A point is a fixed point of the flow

generated by an autonomous system ẋ = f (x), x ∈ Rn if and only if φ(t, x) = x for all t ∈ R. Consequently

in continuous system, this gives ẋ = 0 ⇒ f (x) = 0. For nonautonomous systems fixed point can be

defined for a fixed time interval. Ã fixed point is also known as a critical point or an equilibrium point

or a stationary point. This point is also called stagnation point with respect to the flow φt in Rn. Flows

on line may have no fixed points, only one fixed point, finite number of fixed points, and infinite number

of fixed points. For example, the flow ẋ = 5 (no fixed points), ẋ = x (only one fixed point), ẋ = x2
− 1 (two

fixed points), and ẋ = sin x (infinite number of fixed points).

1.5 Linear Stability Analysis

A fixed point, say x0 is said to be stable if for a given ε > 0, there exists a δ > 0 depending upon ε such

that for all t ≥ t0, ‖x(t) − x0(t)‖ < ε, whenever ‖x (t0) − x0 (t0)‖ < δ, where ‖ · ‖ : Rn
→ R denotes the norm

of a vector in Rn. Otherwise, the fixed point is called unstable. In linear stability analysis the quadratic

and higher order terms in the Taylor series expansion about a fixed point x∗ of a system ẋ = f (x), x ∈ R

are neglected due to the smallness of the terms. Consider a small perturbation quantity ξ(t), away from

the fixed point x∗, such that x(t) = x∗ + ξ(t). We see whether the perturbation grows or decays as time

goes on. So we get the perturbation equation as

ξ̇ = ẋ = f (x) = f (x∗ + ξ) .

Taylor series expansion of f (x∗ + ξ) gives

˙̄ξ = f (x∗) + ξ f ′ (x∗) +
ξ2

2
f ′′ (x∗) + · · ·

According to linear stability analysis, we get

ξ̇ = ξ f ′ (x∗)
[
∵ f (x∗) = 0

]
Assuming f ′ (x∗) , 0, the perturbation ξ(t) grows exponentially if f ′ (x∗) > 0 and decays exponentially

if f ′ (x∗) < 0. Linear theory fails if f ′ (x∗) = 0 and then higher order derivatives must be considered in the

neighborhood of fixed point for stability analysis of the system.

Example 1.1 Find the evolution operator φt for the one-dimensional flow ẋ = −x2. Show that φt forms a

dynamical group. Is it a commutative group?
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Continuous Dynamical Systems

Solution The solutions of the given system are obtained as below:

ẋ =
dx
dt

= −x2
⇒

1
x

= t + A⇒ x(t) =
1

t + A

in any interval ofR that does not contain the point x = 0, where A is a constant. If we take starting point

x(0) = x0, then A = 1/x0 and so we get

x(t) =
x0

1 + x0t
, t , −1/x0.

The point x = 0 is not included in this solution. But it is the fixed point of the given system, because

ẋ = 0 ⇔ x = 0. Therefore, φt(0) = 0 for all t ∈ R. So the evolution operator of the system is given as

φt(x) = x
1+xt for all x ∈ R.

The evolution operator φt is not defined for all t ∈ R. For example, if t = −1/x, x , 0, then φt is

undefined. Thus we see that the interval in which φt is defined is completely dependent on x.

We shall now examine the group properties of the evolution operator φt below:

(i) φrφs ∈
{
φt(x), t ∈ R, x ∈ R

}
∀r, s ∈ R (Closure property)

Now,

φr(y) =
y

1 + yr
. Take y =

x
1 + xs

=
x/1 + sx
1 + x

1+x
=

x
1 + xs + xr

=
x

1 + x(s + r)

= φs+r ∈
{
φt(x), t ∈ R, x ∈ R

}
(ii) φt

(
φsφr

)
=

(
φtφs

)
φr (Associative property)

L.H.S. = φt

((
φsφr

)
(x)

)
= φt(y) =

y
1 + yt

=
z

1 + zs
=

x
1 + x(r + s)

, y = φs

(
φr(x)

)
(where y = φs(z), z = φr(x) =

x
1 + rx

)
∴ L.H.S =

x
1 + x(t + r + s)

= φr+r+s(x)

R.H.S. =
((
φtφs

)
φr(x)

)
Now,

φt(y) =
y

1 + yt
, y = φs(x) =

x
1 + sx

=
x

1 + x(t + s)
= φt+s(x)

φt+s

(
φr

)
(x) = φt+s(z) =

z
1 + z(t + s)

, z = φr(x) =
x

1 + rx

φt+s

(
φr

)
(x) =

x
1 + x(t + s + r)

= φt+s+r(x)

10



Continuous Dynamical Systems

Hence, φt

(
φsφr

)
(x) =

(
φsφr

)
φt(x),∀x ∈ R.

(iii) φ0(x) = x
1+x.0 = x, φ0 is the identity operator.

φtφ−t(x) = φt(y) =
y

1 + ty
, y = φ−t(x) =

x
1 − tx

=
x

1 − tx + tx
= x = φ0(x)

(
φ−t is the inverse of φt

)
Hence the flow evolution operator forms a dynamical group.

(v) φtφs = φsφt

Now, (
φtφs

)
(x) = φt(y) =

y
1 + ty

, y = φs(x) =
x

1 + xs

=
x

1 + x(t + s)
= φt+s(x)

φsφt(x) = φs(z) =
z

1 + sz
, z = φt(x) =

x
1 + tx

=
x

1 + tx + sx
=

x
1 + (s + t)x

= φs+t(x)

So, φtφs = φsφt (Commutative property).

Thus, the evolution operator φt forms a commutative group.

Example 1.2 Using linear stability analysis determine the stability of the critical points for the following

systems

(i) ẋ = sin x, (ii) ẋ = x2

Solution (i) The given system has infinite numbers of critical points. The critical points are x∗n =

nπ,n = 0,±1,±2, . . .. When n is even, f ′
(
x∗n

)
= cos

(
x∗n

)
= cos(nπ) = (−1)n = 1 > 0. So, these critical points

are unstable. When n is odd, f ′
(
x∗n

)
= −1 < 0, and so these critical points are stable.

(ii) The critical point of the system is at x∗ = 0. Now, f ′ (x∗) = 0 and f ′′ (x∗) = 2 > 0. Hence, x∗ is

attracting when x < 0 and repelling when x > 0. Actually, the critical point is semi-stable in nature.

1.6 Analysis of One-Dimensional Flows

As we know qualitative approach is the combination of analysis and geometry and is a powerful tool for

analyzing solution behaviors of a system qualitatively. By drawing trajectories in phase line/plane/space,

the behaviors of phase points may be found easily. In qualitative analysis we mainly look for the following

solution behaviors:

(i) Local stabilities of fixed points for a system;

(ii) Analyzing the existence of periodic/quasi-periodic solutions, limit cycle, relaxation oscillation,

hysteresis, etc.;

(iii) Local and asymptotic solution behaviors of a system;
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Continuous Dynamical Systems

(iv) Topological features of flows such as bifurcations, catastrophe, topological equivalence, transi-

tiveness, etc.

We shall now analyze a simple one-dimensional system as follows.

Consider a one-dimensional system represented as ẋ(t) = sin x with the initial condition x(t = 0) =

x(0) = x0. The characteristic features of the system are (i) it is a one-dimensional system, (ii) nonlinear

system (iii) autonomous system, and (iv) its closed-form solution (analytical solution) exists. This is a

one-dimensional flow and we analyze the system on the basis of flow. The analytical solution of the

system is obtained easily

dx
dt

= sin x⇒ dt = cosec(x)dx

Integrating, we get

t =

∫
cosec(x)dx

= − log | cosec(x) + cot(x)| + c

where c is an integrating constant. Using the initial condition x(0) = x0, we get the integrating

constant c as

c = log |cosec (x0) + cot (x0)| .

Thus the solution of the system is given as

t = log
∣∣∣∣∣cosec (x0) + cot (x0)

cosec(x) + cot(x)

∣∣∣∣∣
From this closed-form solution, the behaviors of solutions for any initial conditions are difficult to

analyse. Moreover, the asymptotic values of the system are

also difficult to obtain. The qualitative approach can give better dynamical behavior about this simple

system.

We consider t as time, x as the position of an imaginary particle moving along the flow in real line

and ẋ as the velocity of that particle. The differential equation ẋ = sin x represents a vector field on the

line. It gives the velocity vector ẋ at each position x. The arrows point to the right when ẋ > 0 and to the

left when ẋ < 0. We shall draw the graph of sin x versus x in xẋ - plane which gives the flow in the x-axis

(see Fig. 1.1).

We may imagine that fluid is flowing steadily along the x-axis with a velocity ẋ which varies from

place to place, according to equation ẋ = sin x. At points ẋ = 0, there is no flow and such points are called

equilibrium points (fixed points). According to the definition of fixed point, the equilibrium points of this

system are obtained as sin x = 0 ⇒ x = nπ(n = 0,±1,±2, . . .). This simple looking autonomous system

12



Continuous Dynamical Systems

has infinite numbers of equilibrium points in R. We can see that there are two kinds of equilibrium

points. The equilibrium point where the flow is toward the point is called sink or attractor (neighboring

trajectories approach asymptotically to the point as t→ ∞ ). On the other hand, when the flow is away

from the point, the point is called source or repellor (neighboring trajectories move away from the point

as t→∞ ). From the above figure the solid circles represent the sinks that are stable equilibrium points

and the open circles are the sources, which are unstable equilibrium points. The names are given because

the sinks and sources are common in fluid flow problems. From the geometric approach one can get

local stability behavior of the equilibrium points of the system easily and is valid for all time. We shall

now re-look the analytical solution of the system. The analytical solution can be expressed as

t = log | tan(x/2)| + c⇒ x(t) = 2 tan−1
(
Aet

)
where A is an integrating constant.

Figure 1.1: Graphical representation of flow generated by sin(x)

Let the initial condition be x0 = x(0) = π/4. Then from the above solution we obtain

A = tan(π/8) = −1 +
√

2 = 1/(1 +
√

2)

So the solution is expressed as

x(t) = 2 tan−1

(
et

1 +
√

2

)
We see that the solution x(t)→ π and t→∞.

Without using analytical solution for this particular initial condition the same result can be found

by drawing the graph of x versus t. So the solution’s behavior at any initial condition can be obtained

13
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easily by geometric approach. This simple one-dimensional system also has an interesting application.

For a slow motion of a spring immersed in a highly viscous fluid such as grease or viscoelastic fluid

(the combined effects of fluid viscosity and elasticity for example, synovial fluid in the joints of human

bones), the viscous damping force is very strong compared to the inertia of motion. So one can neglect

acceleration term (that is, inertia) and the spring-mass system may be governed by the equation αẋ =

sin x, whereα > 0 (string constant) is a real number and the dynamics can be obtained using this approach

for different values of α (see the book Strogatz [5] for more physical examples and explanations).

We shall discuss a few worked out examples presented below.

Example 1.5 With the help of flow concept discuss the local stability of the fixed points of ẋ = f (x) =(
x2
− 1

)
.

Solution The fixed points of the given autonomous system are given by setting f (x) = 0. This gives

x = ±1. So the fixed points of the system are 1 and -1 . For the local stability of the system about these

fixed points we plot the graph of the function f (x) and then sketch the vector field. The flow is to the

right direction, indicated by the symbol ’→ ’, where the velocity ẋ > 0, that is, where
(
x2
− 1

)
> 0 and

to the left direction, indicated by the symbol ’← ’, where ẋ < 0, that is,
(
x2
− 1

)
< 0. We also use solid

circles to represent stable fixed points and open circles for unstable fixed points.

In Fig.1.2 the arrows indicate the flow of the system. From the figure, we see that the fixed point

x = 1 is unstable, since it acts as a source point and the fixed point x = −1 is stable, since it acts as a sink

point.

Example 1.6 Discuss the stability character of the fixed points for the system ẋ = x(1 − x) using the

concept of flow.

Figure 1.2: Graphical representation of f (x) =
(
x2
− 1

)

Solution Here f (x) = x(1 − x). Then for the fixed points, we have

14
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f (x) = 0⇒ x(1 − x) = 0⇒ x = 0, 1

Thus the fixed points are 0 and 1 . To discuss the stability of these fixed points we plot the system ( x

versus ẋ) and then sketch the vector field. The flow is to the right direction, indicated by the symbol ’→

’, when the velocity ẋ > 0, and to the left direction, indicated by the symbol ’← ’, when ẋ < 0. We also

use solid circle to represent stable fixed point and open circle to represent unstable fixed point.

From Fig. 1.3 we see that the fixed point x = 1 is stable whereas the fixed point x = 0 is unstable.

Example Find the fixed points and analyze the local stability of the following systems (i) ẋ = x + x3

(ii) ẋ = x − x3 (iii) ẋ = −x − x3

Solution (i) Here f (x) = x + x3. Then for fixed points f (x) = 0 ⇒ x + x3 = 0 ⇒ x = 0, as x ∈ R. So, 0

is the only fixed point of the system. We now see that when x > 0, ẋ > 0 and when x < 0, ẋ < 0. Hence

the fixed point x = 0 is unstable. The graphical representation of the flow generated by the system is

displayed in Fig.1.4.

(ii) Here f (x) = x − x3. Then f (x) = 0 ⇒ x − x3 = 0 ⇒ x = 0, 1,−1. Therefore, the fixed points of the

system are 0, 1,−1. We now see that

(a) when x < −1, then ẋ > 0

(b) when −1 < x < 0, ẋ < 0

(c) when 0 < x < 1, ẋ > 0

(d) when x > 1, then ẋ < 0.

This shows that the fixed points 1 and -1 are stable whereas the fixed point 0 is unstable (Fig. 1.5).

Figure 1.3: Pictorial representation of f (x) = x(1 − x)

(iii) Here f (x) = −x − x3. Then f (x) = 0 ⇒ −x − x3 = 0 ⇒ x = 0, as x ∈ R. So x = 0 is the only fixed

point of the system. We now see that ẋ > 0 when x < 0 and ẋ < 0 when x > 0. This shows that the fixed

point x = 0 is stable. The graphical representation of the flow generated by the system is displayed in
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Figure 1.4: Graphical representation of f (x) =
(
x + x3

)

Fig. 1.6.

Example 1.8 Determine the equilibrium points and sketch the phase diagram in the neighborhood of

the equilibrium points for the system represented as ẋ + x sgn(x) = 0.

Solution Given system is ẋ + x sgn(x) = 0, that is, ẋ = −x sgn(x), where the function sgn(x) is defined

as

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

For equilibrium points, we have

ẋ = 0⇒ x sgn x = 0⇒ x = 0
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Figure 1.5: raphical representation of the flow generated by
(
x − x3

)

Figure 1.6: Graphical representation of f (x) =
(
−x − x3

)
versus x

This shows that the system has only one equilibrium point at x = 0. In flow analysis we see that the

velocity ẋ < 0 for all x , 0. The flow is to the right direction, when ẋ > 0, in the negative x-axis and to

the left direction, when ẋ < 0, in the positive x-axis. This is shown in the phase diagram depicted in Fig.

1.7, which shows that the fixed point origin is semi-stable.

1.7 Conservative and Dissipative Dynamical Systems

The dichotomy of dynamical systems in conservative versus dissipative is very important. They have

some fundamental properties. Particularly, conservative systems are the integral part of Hamiltonian

mechanics. We give here only the formal definitions of conservative and dissipative systems. Consider

an autonomous system represented as
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ẋ = f (x), x ∈ Rn. (1.2)

Figure 1.7: Graphical representation of the flow ẋ = −x sgn x

The conservative and dissipative systems are defined with respect to the divergence of the corre-

sponding vector field, which in turn refers to the conservation of volume or area in their state space or

phase plane, respectively as follows:

A system is said to be conservative if the divergence of its vector field is zero. On the other hand, it

is said to be dissipative if its vector field has negative divergence. The phase volume in a conservative

system is constant under the flow while for a dissipative system the phase volume occupied by the

system is gradually decreased as the time t increases and shrinks to zero as t→∞. When divergence of

vector field is positive, the phase volume is gradually expanding. We shall discuss it in a later chapter.

We state a lemma below which gives the change of volume in a phase space for an autonomous system.

Sometimes, it is useful to find the evolution of volume in the phase space of a system ẋ = f (x), x ∈ Rn.

The system generates a flow φ(t, x). We give Liouville’s theorem which describes the time evolution of

volume under the flow φ(t, x). Before this we now give the following lemma.

Lemma Consider an autonomous vector field ẋ = f (x), x ∈ Rn and generates a flow φt(x). Let D0 be

a domain inRn and φt (D0) be its evolution under the flow. If V(t) is the volume of Dt, then the time rate

of change of volume is given as dv
dt

∣∣∣
t=0

=
∫

D0
∇ · f dx.

Proof The volume V(t) can be expressed in the following form using the definition of the Jacobian of

a transformation as

V(t) =

∫
D0

∣∣∣∣∣∣∂φ(t, x)
∂x

∣∣∣∣∣∣ dx
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Expanding Taylor series of φ(t, x) in the neighborhood of t = 0, we get

φ(t, x) = x + f (x)t + O
(
t2
)

⇒
∂φ

∂x
= I +

∂ f
∂x

t + O
(
t2
)

Here I is the n × n identity matrix and∣∣∣∣∣∣∂φ∂x

∣∣∣∣∣∣ =

∣∣∣∣∣I +
∂ f
∂x

t
∣∣∣∣∣ + O

(
t2
)

= 1 + trace
(
∂ f
∂x

)
t + O

(
t2
)

[Using expansion of the determinant]

Now, trace
(
∂ f
∂x

)
= ∇ · f , so we have

V(t) = V(0) +

∫
D0

t∇ · f dx + O
(
t2
)

This gives dv
dt

∣∣∣
t=0

=
∫

D0
∇ · f dx.

Theorem (Liouville’s Theorem) Suppose ∇ · f = 0 for a vector field f . Then for any region D0 ⊆ Rn,

the volume V(t) generated by the flow φ(t, x) is V(t) = V(0),V(0) being the volume of D0.

Proof Suppose the divergence of the vector field f is everywhere constant, that is, ∇ · f = c. For

arbitrary time t0 the evolution equation for the volume is given as V̇ = cV. This gives V(t) = V(0)ect.

When the vector field is divergence free, that is, c = 0, we get the result V̇ = 0⇒ V(t) = V(0) = constant.

Thus we can say that the flow generated by a time independent system is volume preserving.

Examples of conservative and dissipative systems are presented below.

(a) Consider a linear and undamped pendulum represented as ẍ + x = 0. This is an example of a

conservative system. Setting ẋ = y, we can write it as a system of equations

ẋ = y

ẏ = −x


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The system may also be written in the compact form ẋ = f x), where f (x) =
( y
−x

)
. The divergence

of the vector field f is given by ∇ · f = ∂
∂x (y) + ∂

∂y (−x) = 0. According to the definition, the system is

conservative and the area occupied in the xy-phase plane is constant.

(b) The damped pendulum governed by ẍ+αẋ+βx = 0, α, β > 0 is an example of a dissipative system.

Setting ẋ = y, we can write the system as

ẋ = y

ẏ = −xy − βx


The vector field is then expressed as f (x) =

( y
−αy−βx

)
. Now, ~∇ · f = ∂

∂x (y) + ∂
∂y (−αy− βx) = −α < 0, since

α > 0.

This shows that the divergence of the vector field is negative.

So the system is dissipative in nature and the area in the phase plane is decreasing as time goes

on. This is the simplest linear oscillator with linear damping. It describes a spring-mass system with a

damper in parallel. The spring force is proportional to the extension x of the spring and the damping or

frictional force is proportional to the velocity ẋ . The two constants α and β are related to the stiffness

of the spring and the degrees of friction in the damper, respectively. According to the above lemma, the

change in phase area is given by

A(t) = cA(0)e−α, α > 0 as t→∞, c being a constant.

Example Find the phase volume element for the systems (i) ẋ = −x, (ii) ẋ = ax − bxy, ẏ = bxy − cy where

x, y ≥ 0 and a, b, c are positive constants.

Solution (i) The flow of the system ẋ = −x is attracted toward the point x = 0. The time rate of change

of volume element V(t) under the flow is given as

dV
dt

∣∣∣∣∣
r=0

= −

∫
D(0)

dx = −V(0)

or, V(t) = V(0)e−t
→ 0 as t→∞.

Hence the phase volume element V(t) shrinks exponentially.

(ii) The given system is a Lotka-Volterra predator-prey population model. The rate of change in

phase area A(t) is given as
dV
dt

= −

∫
~∇ : f dx dy

= −

∫
(a − c − by + bx)dx dy

This shows that a phase area periodically shrinks and expands.
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1.8 Some Definitions

In this section we give some important preliminary definitions relating to flow of a system. The defini-

tions given here are elaborately discussed in the later chapters for higher dimensional systems.

Invariant set A set D ⊂ Rn is said to be an invariant set under the flowφt if for any point p ∈ D, φt(p) ∈

D for all t ∈ R. The set D is said to be positively invariant if φr(p) ∈ D for t ≥ 0. Trajectories starting in an

invariant set remain in the set for all times. An interval is called trapping if it is mapped into itself and is

said to be invariant if it is mapped exactly onto itself. Moreover, if a bounded interval is trapping, then

all of its trajectories are trapped inside and must converge to a closed, invariant, and bounded limit set.

Basically these limit sets are the attractors of a system. So the periodic orbits are examples of invariant

sets. We now define two limiting topological concepts which are relevant to the orbits of dynamical

systems.

Limit points ( ω - and α-limit points)

The asymptotic behavior of a trajectory may be related with limit points/sets or cycles and are termed

as ω - and α-limit points/sets or cycles. We now give the definitions.

A point p ∈ Rn is called an ω-(resp. a α-) limit point if there exists a sequence {ti} with ti → ∞ (resp.

ti → −∞ ) such that φ (ti, x)→ p as i→∞. The ω-limit set(cycle) is denoted by Λ(x) and is defined as

Λ(x) =
{
x ∈ Rn

| ∃ {ti} with ti →∞ and φ (ti, x)→ p as i→∞
}
.

Similarly, the α-limit set (cycle), µ(x), is defined as

µ(x) =
{
x ∈ Rn

| ∃ {ti} with ti → −∞ and φ (ti, x)→ p as i→∞
}
.

For example, consider a flow φ(t, x) on R2 generated by the system ṙ = cr(1 − r), θ̇ = 1, c being a

positive constant. For x , 0, let p be any point of the closed orbit C and take {ti}
∞

i=1 to be the sequence of

t > 0. The trajectory through x crosses the radial line through p. So, ti →∞ as i→∞ and

φ (ti, x) → p as i → ∞. If x lies in the closed orbit C, then φ (ti, x) = p for each i. Hence every point of C

is a ω-limit point of x and so Λ(x) = C for every x , 0. When |x| ≤ 1, the sequence {ti}
∞

i=1 with t < 0 gives

the α-limit set µ(x) =

 {0} for |x| < 1

closed orbit for |x| = 1
.

When |x| > 1, there is no sequence {ti}
∞

i=1, with ti →∞ as i→∞, such that φ (ti, x) exists as i→∞. So,

µ(x) is empty when |x| > 1. The closed orbit C is called a limit cycle of the system.

The trajectory of a system through a point x is the set γ(x) =
⋃

t∈R φ(t, x) and the corresponding

positive semi-trajectory γ+(x) and negative semi-trajectory γ−(x) are defined as follows:

γ+(x) =
⋃
t≥0

φ(t, x) and γ−(x) =
⋃
t≤0

φ(t, x).
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Attracting set A closed invariant set D ⊂ Rn for a flow φr is said to be an attracting set if there exists

some neighborhood U in D such that ∀t ≥ 0, φ(t,U) ⊂ U and
⋂

t>0 φ(t,U) = D.

Absorbing set A positive invariant compact subset B ⊆ Rn is said to be an absorbing set if there exists

a bounded subset C of Rn with C ⊃ B such that tC > 0⇒ φ(t,C) ⊂ B∀t ≥ tC (see the book by Wiggins [7]

for details).

Trapping zone An open set U in an invariant set D ⊂ Rn in an attracting set for a flow generated by

a system is called a trapping zone. Let a set A be closed and invariant. The set A is said to be stable if

and only if every neighborhood of A contains a neighborhood U of A which is trapping.

Basin of attraction The domain (called as basin of attraction) of an attracting set D is defined as⋃
t≤0 φ(t,U) where U is any open set in D ⊂ Rn.

Consider the one-dimensional system ẋ = −x4 sin(π/x). It has countably infinite set of fixed points at

x∗ = 0,± 1
n ,n = 1, 2, 3, . . .. Now,

f (x) = −x4 sin(π/x)⇒ f ′(x) = −4x3 sin(π/x) + πx2 cos(π/x)

⇒ f ′ (x∗)
∣∣∣
x−± 1

n
=
π

n2 cos(nπ) =
π

n2 (−1)n.

The fixed point x∗ = 0 is neither attracting nor repelling. The interval [−1, 1] is an attracting set of the

given system. The fixed points x∗ = ± 1
2n ,n = 1, 2, . . . are repelling while the fixed points x∗ = ± 1

(2π−1) ,n =

1, 2, . . . are attracting.
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CHAPTER 2

LINEAR SYSTEMS

This chapter presents a study of linear systems of ordinary differential equations:

ẋ = Ax (2.1)

where x ∈ Rn,A is an n × n matrix and

ẋ =
dx
dt

=


dx1
dt
...

dxn
dt


It is shown that the solution of the linear system 2.1 together with the initial condition x(0) = x0 is

given by

x(t) = eAtx0

where eAt is an n × n matrix function defined by its Taylor series. A good portion of this chapter is

concerned with the computation of the matrix eAt in terms of the eigenvalues and eigenvectors of the

square matrix A. Throughout this cour all vectors will be written as column vectors and AT will denote

the transpose of the matrix A.

2.1 Uncoupled Linear Systems

The method of separation of variables can be used to solve the first-order linear differential equation
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ẋ = ax

The general solution is given by

x(t) = ceat

where the constant c = x(0), the value of the function x(t) at time t = 0.

Now consider the uncoupled linear system

ẋ1 = −x1

ẋ2 = 2x2

This system can be written in matrix form as (2.1). where

A =

 −1 0

0 2


Note that in this case A is a diagonal matrix, A = diag[−1, 2], and in general whenever A is a

diagonal matrix, the system 2.1 reduces to an uncoupled linear system. The general solution of the

above uncoupled linear system can once again be found by the method of separation of variables. It is

given by

x1(t) = c1e−t (2.2)

x2(t) = c2e2t (2.3)

or equivalently by

x(t) =

 e−t 0

0 e2t

 c (2.4)

where c = x(0). Note that the solution curves 2.2, 4 lie on the algebraic curves y = k/x2 where the

constant k = c2
1c2. The solution 2.2, 4 or 2.4 defines a motion along these curves; i.e., each point c ∈ R2

moves to the point x(t) ∈ R2 given by 2.4 after time t. This motion can be described geometrically

by drawing the solution curves 2.2, 4 in the x1, x2 plane, referred to as the phase plane, and by using

arrows to indicate the direction of the motion along these curves with increasing time t; cf. Figure 1. For

c1 = c2 = 0, x1(t) = 0 and x2(t) = 0 for all t ∈ R and the origin is referred to as an equilibrium point in

this example. Note that solutions starting on the x1-axis approach the origin as t→∞ and that solutions

starting on the x2-axis approach the origin as t→ −∞.

The phase portrait of a system of differential equations such as 2.1 with x ∈ Rn is the set of all solution
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curves of 2.1 in the phase space Rn. Figure 1 gives a geometrical representation of the phase portrait of

the uncoupled linear system considered above. The dynamical system defined by the linear system 2.1

in this example is simply the mapping φ : R × R2
→ R2 defined by the solution x(t, c) given by 2.4; i.e.,

the dynamical system for this example is given by

φ(t, c) =

 e−t 0

0 e2t

 c

Geometrically, the dynamical system describes the motion of the points in phase space along the solution

curves defined by the system of differential equations.

The function

f(x) = Ax

on the right-hand side of 2.1 defines a mapping f : R2
→ R2 (linear in this case).
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This mapping (which need not be linear) defines a vector field on R2; i.e., to each point x ∈ R2, the

mapping f assigns a vector f (x). If we draw each vector f (x) with its initial point at the point x ∈ R2, we

obtain a geometrical representation of the vector field as shown in Figure 2.

Note that at each point x in the phase space R2, the solution curves 2.2 are tangent to the vectors

in the vector field Ax. This follows since at time t = t0, the velocity vector v0 = ẋ (t0) is tangent to the

curve x = x(t) at the point x0 = x (t0) and since ẋ = Ax along the solution curves. Consider the following

uncoupled linear system in R3 :

ẋ1 = x1

ẋ2 = x2

ẋ3 = −x3

(2.5)

The general solution is given by

x1(t) = c1et

x2(t) = c2et

x3(t) = c3e−t

And the phase portrait for this system is shown in Figure 3 above. The x1, x2 plane is referred to as

the unstable subspace of the system (2.5) and

the x3 axis is called the stable subspace of the system (2.5). Precise definitions of the stable and unstable

subspaces of a linear system will be given in the next section.
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2.2 Diagonalization

The algebraic technique of diagonalizing a square matrix A can be used to reduce the linear system (2.1)

to an uncoupled linear system. We first consider the case when A has real, distinct eigenvalues. The

following theorem from linear algebra then allows us to solve the linear system (2.1).

Theorem: If the eigenvalues λ1, λ2, . . . , λn of an n × n matrix A are real and distinct, then any set

of corresponding eigenvectors {v1,v2, . . . ,vn} forms a basis for Rn, the matrix P =
[

v1 v2 · · · vn

]
is

invertible and

P−1AP = diag [λ1, . . . , λn]

This theorem says that if a linear transformation T : Rn
→ Rn is represented by the n × n matrix A

with respect to the standard basis {e1, e2, . . . , en} for Rn, then with respect to any basis of eigenvectors

{v1,v2, . . . ,vn} ,T is represented by the diagonal matrix of eigenvalues, diag [λ1, λ2, . . . , λn]. A proof of

this theorem can be found, for example, in Lowenthal [Lo]. In order to reduce the system (2.1) to an
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uncoupled linear system using the above theorem, define the linear transformation of coordinates

y = P−1x

where P is the invertible matrix defined in the theorem. Then

x = Py,

ẏ = P−1ẋ = P−1Ax = P−1APy

and, according to the above theorem, we obtain the uncoupled linear system

ẏ = diag [λ1, . . . , λn] y

This uncoupled linear system has the solution

y(t) = diag
[
eλ1t, . . . , eλnt

]
y(0)

(Cf. problem 4 in Problem Set 1.) And then since y(0) = P−1x(0) and x(t) = Py(t), it follows that (2.1)

has the solution

x(t) = PE(t)P−1x(0) (2.6)

where E(t) is the diagonal matrix

E(t) = diag
[
eλ1t, . . . , eλnt

]
Corollary. Under the hypotheses of the above theorem, the solution of the linear system (2.1) is given

by the function x(t) defined by (2.6).

Example 2.2.1 Consider the linear system

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

which can be written in the form (2.1) with the matrix

A =

 −1 −3

0 2


The eigenvalues of A are λ1 = −1 and λ2 = 2. A pair of corresponding eigenvectors is given by
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v1 =

 1

0

 , v2 =

 −1

1


The matrix P and its inverse are then given by

P =

 1 −1

0 1

 and P−1 =

 1 1

0 1


The student should verify that

P−1AP =

 −1 0

0 2


Then under the coordinate transformation y = P−1x, we obtain the uncoupled linear system

ẏ1 = −y1

ẏ2 = 2y2

which has the general solution y1(t) = c1e−t, y2(t) = c2e2t. The phase portrait for this system is given in Figure

1 in Section 0.1 which is reproduced below. And according to the above corollary, the general solution to the

original linear system of this example is given by

x(t) = P

 e−t 0

0 e2t

 P−1c

where c = x(0), or equivalently by

x1(t) = c1e−t + c2

(
e−t
− e2t

)
x2(t) = c2e2t (3)

The phase portrait for the linear system of this example can be found by sketching the solution curves defined

by (3). It is shown in Figure 2. The phase portrait in Figure 2 can also be obtained from the phase portrait in

Figure 1 by applying the linear transformation of coordinates x = Py. Note that the subspaces spanned by the

eigenvectors v1 and v2 of the matrix A determine the stable and unstable subspaces of the linear system (2.1)

according to the following definition: Suppose that the n × n matrix A has k negative eigenvalues λ1, . . . , λk and

n− k positive eigenvalues λk+1, . . . , λn and that these eigenvalues are distinct. Let {v1, . . . ,vn} be a corresponding

set of eigenvectors. Then the stable and unstable subspaces of the linear system (2.1), Es and Eu, are the linear
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subspaces spanned by {v1, . . . ,vk} and {vk+1, . . . ,vn} respectively; i.e.,

Es = Span {v1, . . . ,vk}

Eu = Span {vk+1, . . . ,vn}

If the matrix A has pure imaginary eigenvalues, then there is also a center subspace Ec; cf. Problem 2(c) in

Section 0.1. The stable, unstable and center subspaces are defined for the general case in Section 0.9.

2.3 Exponentials of Operators

In order to define the exponential of a linear operator T : Rn
→ Rn, it is necessary to define the concept

of convergence in the linear space L (Rn) of linear operators on Rn. This is done using the operator norm

of T defined by

‖T‖ = max
|x|≤1
|T(x)|

where |x| denotes the Euclidean norm of x ∈ Rn; i.e.,

|x| =
√

x2
1 + · · · + x2

n

The operator norm has all of the usual properties of a norm, namely, for S,T ∈ L (Rn)

(a) ‖T‖ ≥ 0 and ‖T‖ = 0 iff T = 0
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(b) ‖kT‖ = |k|‖T‖ for k ∈ R

(c) ‖S + T‖ ≤ ‖S‖ + ‖T‖.

It follows from the Cauchy-Schwarz inequality that if T ∈ L (Rn) is represented by the matrix A with

respect to the standard basis for Rn, then ‖A‖ ≤
√

n` where ` is the maximum length of the rows of A.

The convergence of a sequence of operators Tk ∈ L (Rn) is then defined in terms of the operator norm

as follows:

Definition 1. A sequence of linear operators Tk ∈ L (Rn) is said to converge to a linear operator

T ∈ L (Rn) as k→∞, i.e.,

lim
k→∞

Tk = T

if for all ε > 0 there exists an N such that for k ≥ N, ‖T − Tk‖ < ε.

Lemma. For S,T ∈ L (Rn) and x ∈ Rn,

(1) |T(x)| ≤ ‖T‖|x|

(2) ‖TS‖ ≤ ‖T‖‖S‖

(3)
∥∥∥Tk

∥∥∥ ≤ ‖T‖k for k = 0, 1, 2, . . ..

Proof. (1) is obviously true for x = 0. For x , 0 define the unit vector y = x/|x|. Then from the

definition of the operator norm,

‖T‖ ≥ |T(y)| =
1
|x|
|T(x)|

(2) For |x| ≤ 1, it follows from (1) that

|T(S(x))| ≤ ‖T‖|S(x)|

≤ ‖T‖‖S‖|x|

≤ ‖T‖‖S‖.

Therefore,

‖TS‖ = max
|x|≤1
|TS(x)| ≤ ‖T‖‖S‖

and (3) is an immediate consequence of (2).

Theorem. Given T ∈ L (Rn) and t0 > 0, the series

∞∑
k=0

Tktk

k!

is absolutely and uniformly convergent for all |t| ≤ t0.

Proof. Let ‖T‖ = a. It then follows from the above lemma that for |t| ≤ t0,
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∥∥∥∥∥∥Tktk

k!

∥∥∥∥∥∥ ≤ ‖T‖k|t|kk!
≤

aktk
0

k!

But

∞∑
k=0

aktk
0

k!
= eat0

It therefore follows from the Weierstrass M-Test that the series

∞∑
k=0

Tktk

k!

is absolutely and uniformly convergent for all |t| ≤ t0; cf. [R],p.148.

The exponential of the linear operator T is then defined by the absolutely convergent series

eT =

∞∑
k=0

Tk

k!

It follows from properties of limits that eT is a linear operator on Rn and it follows as in the proof of

the above theorem that
∥∥∥eT

∥∥∥ ≤ e‖T‖.

Since our main interest in this chapter is the solution of linear systems of the form

ẋ = Ax

we shall assume that the linear transformation T on Rn is represented by the n × n matrix A with

respect to the standard basis for Rn and define the exponential eAt.

Definition 2. Let A be an n × n matrix. Then for t ∈ R,

eAt =

∞∑
k=0

Aktk

k!

For an n × n matrix A, eAt is an n × n matrix which can be computed in terms of the eigenvalues and

eigenvectors of A. This will be carried out

in the remainder of this chapter. As in the proof of the above theorem
∥∥∥eAt

∥∥∥ ≤ e‖A‖|t| where ‖A‖ = ‖T‖ and

T is the linear transformation T(x) = Ax.

We next establish some basic properties of the linear transformation eT in order to facilitate the

computation of eT or of the n × n matrix eA.

Proposition 1. If P and T are linear transformations on Rn and S = PTP−1, then eS = PeTP−1.

Proof. It follows from the definition of eS that

eS = lim
n→∞

n∑
k=0

(
PTP−1

)k

k!
= P lim

n→∞

n∑
k=0

Tk

k!
P−1 = PeTP−1
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The next result follows directly from Proposition 1 and Definition 2.

Corollary 1. If P−1AP = diag
[
λ j

]
then eAt = P diag

[
eλ jt

]
P−1.

Proposition 2. If S and T are linear transformations on Rn which commute, i.e., which satisfy ST = TS,

then eS+T = eSeT.

Proof. If ST = TS, then by the binomial theorem

(S + T)n = n!
∑

j+k=n

S jTk

j!k!

Therefore,

eS+T =

∞∑
n=0

∑
j+k=n

S jTk

j!k!
=

∞∑
j=0

S j

j!

∞∑
k=0

Tk

k!
= eSeT

We have used the fact that the product of two absolutely convergent series is an absolutely convergent

series which is given by its Cauchy product; cf. [R], p. 74.

Upon setting S = −T in Proposition 2, we obtain

Corollary 2. If T is a linear transformation on Rn, the inverse of the linear transformation eT is given by(
eT

)−1
= e−T.

Corollary 3. If

A =

 a −b

b a


then

eA = ea

 cos b − sin b

sin b cos b


Proof. If λ = a + ib, it follows by induction that

 a −b

b a


k

=

 Re
(
λk

)
− Im

(
λk

)
Im

(
λk

)
Re

(
λk

) 
where Re and Im denote the real and imaginary parts of the complex number λ respectively. Thus,
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eA =

∞∑
k=0

 Re
(
λk
k!

)
− Im

(
λk

k!

)
Im

(
λk

k!

)
Re

(
λk

k!

) 
=

 Re
(
eλ

)
− Im

(
eλ

)
Im

(
eλ

)
Re

(
eλ

) 
= ea

 cos b − sin b

sin b cos b


Note that if a = 0 in Corollary 3, then eA is simply a rotation through b radians.

Corollary 4. If

A =

 a b

0 a


then

eA = ea

 1 b

0 1


Proof. Write A = aI + B where

B =

 0 b

0 0


Then aI commutes with B and by Proposition 2,

eA = eaIeB = eaeB

And from the definition

eB = I + B + B2/2! + · · · = I + B

since by direct computation B2 = B3 = · · · = 0.

We can now compute the matrix eAt for any 2 × 2 matrix A. In Section 1.8 of this chapter it is shown

that there is an invertible 2 × 2 matrix P (whose columns consist of generalized eigenvectors of A ) such

that the matrix

B = P−1AP

has one of the following forms
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B =

 λ 0

0 µ

 , B =

 λ 1

0 λ

 or B =

 a −b

b a


It then follows from the above corollaries and Definition 2 that

eBt =

 eλt 0

0 eµt

 , eBt = eλt

 1 t

0 1

 or eBt = eat

 cos bt − sin bt

sin bt cos bt


respectively. And by Proposition 1, the matrix eAt is then given by

eAt = PeBtP−1

As we shall see in Section 1.4, finding the matrix eAt is equivalent to solving the linear system (1) in

Section 1.1.

2.4 The Fundamental Theorem for Linear Systems

Let A be an n × n matrix. In this section we establish the fundamental fact that for x0 ∈ Rn the initial

value problem

ẋ = Ax

x(0) = x0. (1)

has a unique solution for all t ∈ Rn which is given by

x(t) = exp(At)X0. (2)

Notice the similarity in the form of the solution (2) and the solution x(t) = exp(At)X0 of the elementary

first-order differential equation x′ = ax and initial condition x(0) = x0

In order to prove this theorem, we first compute the derivative of the exponential function eAt using the

basic fact from analysis that two convergent limit processes can be interchanged if one of them converges

uniformly.

Lemma. Let A be a square matrix, then
d
dt

eAt = AeAt.
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Proof. Since A commutes with itself, it follows from Proposition 2 and Definition 2 in Section 3 that

d
dt

eAt = lim
h→0

eA(t+h)
− eAt

h

= lim
h→0

eAt

(
eAh
− I

)
h

= eAt lim
h→0

lim
k→∞

(
A +

A2h
2!

+ · · · +
Akhk−1

k!

)
= AeAt.

The last equality follows since by the theorem in Section 1.3 the series defining eAh converges uniformly

for |h| ≤ 1 and we can therefore interchange the two limits.

Theorem( The Fundamental Theorem for Linear Systems).

Let A be an n × n matrix. Then for a given x0 ∈ Rn, the initial value problem

ẋ = Ax

x(0) = x0 (1)

has a unique solution given by

x(t) = eAtx0. (2)

Proof. By the preceding lemma, if x(t) = eAtx0, then

x′(t) =
d
dt

eAtx0 = AeAtx0 = Ax(t)

for all t ∈ R. Also, x(0) = Ix0 = x0. Thus x(t) = eAtx0 is a solution. To see that this is the only solution, let

x(t) be any solution of the initial value problem (1) and set

y(t) = e−Atx(t).

Then from the above lemma and the fact that x(t) is a solution of (1)

y′(t) = −Ae−Atx(t) + e−Atx′(t)

= −Ae−Atx(t) + e−AtAx(t)

= 0
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for all t ∈ R since e−At and A commute. Thus, y(t) is a constant. Setting t = 0 shows that y(t) = x0 and

therefore any solution of the initial value problem (1) is given by x(t) = eAty(t) = eAtx0. This completes

the proof of the theorem.

Example 2.4.1 Solve the initial value problem

ẋ = Ax

x(0) =

 1

0


for

A =

 −2 −1

1 −2


and sketch the solution curve in the phase plane R2. By the above theorem and Corollary 3 of the last section, the

solution is given by

x(t) = eAtx0 = e−2t

 cos t − sin t

sin t cos t


 1

0

 = e−2t

 cos t

sin t

 .
It follows that |x(t)| = e−2t and that the angle θ(t) = tan−1 x2(t)/x1(t) = t. The solution curve therefore spirals

into the origin as shown in Figure 1 below.
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2.5 Linear Systems in R2

In this section we discuss the various phase portraits that are possible for the linear system

ẋ = Ax (1)

when x ∈ R2 and A is a 2 × 2 matrix. We begin by describing the phase portraits for the linear system

ẋ = Bx (2)

where the matrix B = P−1AP has one of the forms given at the end of Section 1.3. The phase portrait for

the linear system (1) above is then obtained from the phase portrait for (2) under the linear transformation

of coordinates x = Py as in Figures 1 and 2 in Section 1.2. First of all, if

B =

 λ 0

0 µ

 , B =

 λ 1

0 λ

 , or B =

 a −b

b a

 ,
it follows from the fundamental theorem in Section 1.4 and the form of the matrix eBt computed in Section

1.3 that the solution of the initial value problem (2) with x(0) = x0 is given by

x(t) =

 eλt 0

0 eµt

 x0, x(t) = eλt

 1 t

0 1

 x0,

or

x(t) = eat

 cos bt − sin bt

sin bt cos bt

 x0

respectively. We now list the various phase portraits that result from these solutions, grouped according

to their topological type with a finer classification of sources and sinks into various types of unstable

and stable nodes and foci:

Case I. B =

 λ 0

0 µ

 with λ < 0 < µ.

39



Linear Systems

The phase portrait for the linear system (2) in this case is given in Figure 1. See the first example in

Section 1.1. The system (2) is said to have a saddle at the origin in this case. If µ < 0 < λ, the arrows

in Figure 1 are reversed. Whenever A has two real eigenvalues of opposite sign, λ < 0 < µ, the phase

portrait for the linear system (1) is linearly equivalent to the phase portrait shown in Figure 1; i.e., it is

obtained from Figure 1 by a linear transformation of coordinates; and the stable and unstable subspaces

of (1) are determined by the eigenvectors of A as in the Example in Section 1.2. The four non-zero

trajectories or solution curves that approach the equilibrium point at the origin as t → ±∞ are called

separatrices of the system.

Case II. B =

 λ 0

0 µ

 with λ ≤ µ < 0 or B =

 λ 1

0 λ

 with λ < 0. The phase portraits for the linear

system (2) in these cases are given in Figure 2. Cf. the phase portraits in Problems 1(a), (b) and (c) of

Problem Set 1 respectively. The origin is referred to as a stable node in each of these

cases. It is called a proper node in the first case with λ = µ and an improper node in the other two cases.

If λ ≥ µ > 0 or if λ > 0 in Case II, the arrows in Figure 2 are reversed and the origin is referred to as

an unstable node. Whenever A has two negative eigenvalues λ ≤ µ < 0, the phase portrait of the linear

system (1) is linearly equivalent to one of the phase portraits shown in Figure 2. The stability of the node

is determined by the sign of the eigenvalues: stable if λ ≤ µ < 0 and unstable if λ ≥ µ > 0. Note that

each trajectory in Figure 2 approaches the equilibrium point at the origin along a well-defined tangent
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line θ = θ0, determined by an eigenvector of A, as t→∞.
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Case III. B =

 a −b

b a

 with a < 0. b > 0 b < 0

The phase portrait for the linear system (2) in this case is given in Figure 3. Cf. Problem 9. The

origin is referred to as a stable focus in these cases. If a > 0, the trajectories spiral away from the origin

with increasing t and the origin is called an unstable focus. Whenever A has a pair of complex conjugate

eigenvalues with nonzero real part, a ± ib, with a < 0, the phase portraits for the system (1) is linearly

equivalent to one of the phase portraits shown in Figure 3. Note that the trajectories in Figure 3 do not

approach the origin along well-defined tangent lines; i.e., the angle θ(t) that the vector x(t) makes with

the x1-axis does not approach a constant θ0 as t → ∞, but rather |θ(t)| → ∞ as t → ∞ and |x(t)| → 0 as

t→∞ in this case.

Case IV. B =

 0 −b

b 0

 The phase portrait for the linear system (2) in this case is given in Figure 4.

Cf. Problem 1(d) in Problem Set 1. The system (2) is said to have a center at the origin in this case.

Whenever A has a pair of pure imaginary complex conjugate eigenvalues, ±ib, the phase portrait of the

linear system (1) is linearly equivalent to one of the phase portraits shown in Figure 4. Note that the

trajectories or solution curves in Figure 4 lie on circles |x(t)| = constant. In general, the trajectories of the

system (1) will lie on ellipses and the solution x(t) of (1) will satisfy m ≤ |x(t)| ≤ M for all t ∈ R; cf. the

following Example. The angle θ(t) also satisfies |θ(t)| → ∞ as t→∞ in this case.
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If one (or both) of the eigenvalues of A is zero, i.e., if det A = 0, the origin is called a degenerate

equilibrium point of (1). The various portraits for the linear system (1) are determined in Problem 4 in

this case.

Example 2.5.1 (A linear system with a center at the origin).

The linear system

ẋ = Ax

with

A =

 0 −4

1 0


has a center at the origin since the matrix A has eigenvalues λ = ±2i. According to the theorem in Section 1.6, the

invertible matrix

P =

 2 0

0 1

 with P−1 =

 1/2 0

0 1


reduces A to the matrix

B = P−1AP =

 0 −2

2 0


The student should verify the calculation. The solution to the linear system ẋ = Ax, as determined by Sections

1.3 and 1.4 , is then given by

x(t) = P

 cos 2t − sin 2t

sin 2t cos 2t

 P−1c =

 cos 2t −2 sin 2t

1/2 sin 2t cos 2t

 c

where c = x(0), or equivalently by

x1(t) = c1 cos 2t − 2c2 sin 2t

x2(t) = 1/2c1 sin 2t + c2 cos 2t.
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It is then easily shown that the solutions satisfy

x2
1(t) + 4x2

2(t) = c2
1 + 4c2

2

for all t ∈ R; i.e., the trajectories of this system lie on ellipses as shown in Figure 5.

Definition 1. The linear system (1) is said to have a saddle, a node, a focus or a center at the origin if the

matrix A is similar to one of the matrices B in Cases I, II, III or IV respectively, i.e., if its phase portrait

is linearly equivalent to one of the phase portraits in Figures 1, 2, 3 or 4 respectively.

Remark If the matrix A is similar to the matrix B, i.e., if there is a nonsingular matrix P such that

P−1AP = B, then the system (1) is transformed into the system (2) by the linear transformation of

coordinates x = Py. If B has the form III, then the phase portrait for the system (2) consists of either a

counterclockwise motion (if b > 0 ) or a clockwise motion (if b < 0 ) on either circles (if a = 0 ) or spirals

(if a , 0 ). Furthermore, the direction of rotation of trajectories in the phase portraits for the systems (1)

and (2) will be the same if det P > 0 (i.e., if P is orientation preserving) and it will be opposite if det P < 0

(i.e., if P is orientation reversing).

For det A , 0 there is an easy method for determining if the linear system has a saddle, node, focus or

center at the origin. This is given in the next theorem. Note that if det A , 0 then Ax = 0 if x = 0; i.e., the

origin is the only equilibrium point of the linear system (1) when det A , 0. If the origin is a focus or a

center, the sign σ of ẋ2 for x2 = 0 (and for small x1 > 0 ) can be used to determine whether the motion is

counterclockwise (if σ > 0 ) or clockwise (if σ < 0 ).

Theorem. Let δ = det A and τ = trace A and consider the linear system

ẋ = Ax. (1)

(a) If δ < 0 then (1) has a saddle at the origin.

(b) If δ > 0 and τ2
− 4δ ≥ 0 then (1) has a node at the origin; it is stable if τ < 0 and unstable if τ > 0.
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(c) If δ > 0, τ2
− 4δ < 0, and τ , 0 then (1) has a focus at the origin; it is stable if τ < 0 and unstable if

τ > 0.

(d) If δ > 0 and τ = 0 then (1) has a center at the origin.

Note that in case (b), τ2
≥ 4|δ| > 0; i.e., τ , 0.

Proof The eigenvalues of the matrix A are given by

λ =
τ ±
√

τ2 − 4δ
2

Thus (a) if δ < 0 there are two real eigenvalues of opposite sign.

(b) If δ > 0 and τ2
− 4δ ≥ 0 then there are two real eigenvalues of the same sign as τ;

(c) if δ > 0, τ2
− 4δ < 0 and τ , 0 then there are two complex conjugate eigenvalues λ = a± ib and, as will

be shown in Section 1.6, A is similar to the matrix B in Case III above with a = τ/2; and

(d) if δ > 0 and τ = 0 then there are two pure imaginary complex conjugate eigenvalues. Thus, cases a,

b, c and d correspond to the Cases I, II, III and IV discussed above and we have a saddle, node, focus or

center respectively.

Definition 2. A stable node or focus of (1) is called a sink of the linear system and an unstable node or

focus of (1) is called a source of the linear system.

The above results can be summarized in a "bifurcation diagram," shown in Figure 6, which separates

the (τ, δ)-plane into three components in which the solutions of the linear system (1) have the same

"qualitative structure". In describing the topological behavior or qualitative structure of the solution set

of a linear system, we do not distinguish between nodes and foci, but only if they are stable or unstable.

There are eight different topological types of behavior that are possible for a linear system according to

whether δ , 0 and it has a source, a sink, a center or a saddle or whether δ = 0 and it has one of the four

types of behavior determined in Problem 4.
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2.6 Complex Eigenvalues

If the 2n × 2n real matrix A has complex eigenvalues, then they occur in complex conjugate pairs and if

A has 2n distinct complex eigenvalues, the following theorem from linear algebra proved in Hirsch and

Smale [H/S] allows us to solve the linear system (2.1).

Theorem. If the 2n × 2n real matrix A has 2n distinct complex eigenualues λ j = a j + ib j and λ̄ j = a j − ib j

and corresponding complex eigenvectors

w j = u j + iv j and w̄ j = u j − iv j, j = 1, . . . ,n, then {u1, v1, . . . ,un, vn} is a basis for R2n, the matrix

P =
[

v1 u1 v2 u2 · · · vn un

]
is invertible and

P−1AP = ding

 a j −b j

b j a j

 ,
a real 2n × 2n matrix with 2 × 2 blocks along the diagonal.

Remark. Note that if instead of the matrix P we use the invertible matrix

Q =
[

u1 v1 u2 v2 · · · un vn

]
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then

Q−1AQ = diag

 a j b j

−b j a j

 .
The next corollary then follows from the above theorem and the fundamental theorem in Section 1.4.

Corollary. Under the hypotheses of the above theorem, the solution of the instial value problem

ẋ = Ax

x(0) = x0 (1)

is given by

x(t) = P diag ea jt

 cos b jt − sin b jt

sin b jt cos b jt

 P−1x0.

Note that the matrix

R =

 cos bt − sin bt

sin bt cos bt


represents a rotation through bt radians.

Example 2.6.1 Solve the initial value problem (1) for

A =



1 −1 0 0

1 1 0 0

0 0 3 −2

0 0 1 1


.

The matrix A has the complex eigenvalues λ1 = 1 + i and λ2 = 2 + i (as well as λ̄1 = 1 − i and λ̄2 = 2 − i ).

A corresponding pair of complex eigenvectors is

w1 = u1 + iv1 =



i

1

0

0


and w2 = u2 + iv2 =



0

0

1 + i

1


.

The matrix

P =
[

v1 u1 v2 u2

]
=



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


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is invertible,

P−1 =



1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 1


and

P−1AP =



1 −1 0 0

1 1 0 0

0 0 2 −1

0 0 1 2


The solution to the initial value problem (1) is given by

x(t) = P



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t cos t −e2t sin t

0 0 e2t sin t e2t cos t


P−1x0

=



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t(cos t + sin t) −2e2t sin t

0 0 e2t sin t e2t(cos t − sin t)


x0

In case A has both real and complex eigenvalues and they are distinct, we have the following result: If A

has distinct real eigenvalues λ j and corresponding eigenvectors v j, j = 1, . . . , k and distinct complex eigenvalues

λ j = a j + ib j and λ̄ j = a j − ib j and corresponding eigenvectors w j = u j + iv j and w̄ j = u j − iv j, j = k + 1, . . . ,n,

then the matrix

P =
[

v1 · · · vk vk+1 uk+1 · · · vn un

]
is invertible and

P−1AP = diag [λ1, . . . , λk,Bk+1, . . . ,Bn]

where the 2 × 2 blocks

B j =

 a j −b j

b j a j


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for j = k + 1, . . . ,n. We illustrate this result with an example.

Example 2.6.2 The matrix

A =


−3 0 0

0 3 −2

0 1 1


has eigenvalues λ1 = −3, λ2 = 2 + i (and λ̄2 = 2 − i ). The corresponding eigenvectors

v1 =


1

0

0

 and w2 = u2 + iv2 =


0

1 + i

1


Thus

P =


1 0 0

0 1 1

0 0 1

 , P−1 =


1 0 0

0 1 −1

0 0 1


and

P−1AP =


−3 0 0

0 2 −1

0 1 2


The solution of the initial value problem (1) is given by

x(t) = P


e−3t 0 0

0 e2t cos t −e2t sin t

0 e2t sin t e2t cos t

 P−1x0

=


e−3t 0 0

0 e2t(cos t + sin t) −2e2t sin t

0 e2t sin t e2t(cos t − sin t)

 x0

The stable subspace Es is the x1-axis and the unstable subspace Eu is the x2, x3 plane. The phase portrait is

given in Figure 1.
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2.7 Multiple Eigenvalues

The fundamental theorem for linear systems in Section 1.4 tells us that the solution of the linear system

(2.1) together with the initial condition x(0) = x0 is given by

x(t) = eAtx0

We have seen how to find the n × n matrix eAt when A has distinct eigenvalues. We now complete

the picture by showing how to find eAt, i.e., how to solve the linear system (1), when A has multiple

eigenvalues.

Definition 1 Let λ be an eigenvalue of the n × n matrix A of multiplicity m ≤ n. Then for k = 1, . . . ,m,

any nonzero solution v of

(A − λI)kv = 0

is called a generalized eigenvector of A.

Definition 2 An n × n matrix N is said to be nilpotent of order k if Nk−1 , 0 and Nk = 0.

The following theorem is proved, for example, in Appendix III of Hirsch and Smale [H/S].

Theorem 1. Let A be a real n × n matrix with real eigenvalues λ1, . . . , λn repeated according to their

multiplicity. Then there exists a basis of generalized eigenvectors for Rn. And if {v1, . . . ,vn} is any basis

of generalized eigenvectors for Rn, the matrix P = [v1 · · · vn] is invertible,

A = S + N
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where

P−1SP = diag
[
λ j

]
the matrix N = A − S is nilpotent of order k ≤ n, and S and N commute, i.e., SN = NS.

This theorem together with the propositions in Section 1.3 and the fundamental theorem in Section

1.4 then lead to the following result.

Corollary 1. Under the hypotheses of the above theorem, the linear system (2.1), together with the

initial condition x(0) = x0, has the solution

x(t) = P diag
[
eλ jt

]
P−1

[
I + Nt + · · · +

Nk−1tk−1

(k − 1)!

]
x0

If λ is an eigenvalue of multiplicity n of an n×n matrix A, then the above results are particularly easy

to apply since in this case

S = diag[λ]

with respect to the usual basis for Rn and

N = A − S

The solution to the initial value problem (1) together with x(0) = x0 is therefore given by

x(t) = eλt
[
I + Nt + · · · +

Nktk

k!

]
x0

Let us consider two examples where the n×n matrix A has an eigenvalue of multiplicity n. In these ex-

amples, we do not need to compute a basis of generalized eigenvectors to solve the initial value problem!

Theorem 2. Let A be a real 2n× 2n matrix with complex eigenvalues λ j = a j + ib j and λ̄ j = a j − ib j, j =

1, . . . ,n. Then there exists generalized complex eigenvectors w j = u j + iv j and w j = u j − iv j, i = 1, . . . ,n

such that {u1,v1, . . . ,un,vn} is a basis for R2n. For any such basis, the matrix P =
[

v1 u1 · · · vn un

]
is invertible,

A = S + N

where

P−1SP = diag

 a j −b j

b j a j


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the matrix N = A − S is nilpotent of order k ≤ 2n, and S and N commute.

The next corollary follows from the fundamental theorem in Section 1.4 and the results in Section 1.3:

Corollary 2. Under the hypotheses of the above theorem, the solution of the initial value problem

(2.1), together with x(0) = x0, is given by

x(t) = P diag ea jt

 cos b jt − sin b jt

sin b jt cos b jt

 P−1

[
I + · · · +

Nktk

k!

]
x0

2.8 Stability Theory

In this section we define the stable, unstable and center subspace, Es,Eu and Ec respectively, of a linear

system (2.1). Recall that Es and Eu were defined in Section 1.2 in the case when A had distinct eigenvalues.

We also establish some important properties of these subspaces in this section. Let w j = u j + iv j; be a

generalized eigenvector of the (real) matrix A corresponding to an eigenvalue λ j = a j + ib j. Note that if

b j = 0 then v j = 0. And let

B = {u1, . . . ,uk,uk+1,vk+1, . . . ,um,vm}

be a basis of Rn (with n = 2m − k ) as established by Theorems 1 and 2 and the Remark in Section 1.7.

Definition 1. Let λ j = a j + ib j,w j = u j + iv j and B be as described above. Then

Ea = Span
{
u j,v j | a j < 0

}
Ec = Span

{
u j,v j | a j = 0

}
and

Eu = Span
{
u j,v j | a j > 0

}
;

i.e., Es,Ec and Eu are the subspaces of Rn spanned by the real and imaginary parts of the generalized

eigenvectors w j corresponding to eigenvalues λ j with negative, zero and positive real parts respectively.

Definition 2. If all eigenvalues of the n×n matrix A have nonzero real part, then the flow eAt; Rn
→ Rn

is called a hyperbolic flow and (2.1) is called a hyperbolic linear system.

Definition 3. A subspace E ⊂ Rn is said to be invariant with respect to the flow eAt : Rn
→ Rn if

eAtE ⊂ E for all t ∈ R.

We next show that the stable, unstable and center subspaces, Es,Eu and Ec of (2.1) are invariant under

the flow eAt of the linear system (2.1); i.e., any solution starting in Eu,Eu or Ec at time t = 0 remains in

Eu,Eu or Ec respectively for all t ∈ R.
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Lemma. Let E be the generalized eigenspace of A corresponding to an eigenvalue λ. Then AE ⊂ E.

Proof. Let {v1, . . . ,vk} be a basis of generalized eigenvectors for E. Then given v ∈ E,

v =

k∑
j=1

c jv j

and by linearity

Av =

k∑
j=1

c jAv j

Now since each v j satisfies

(A − λI)k j v j = 0

for some minimal k j, we have

(A − λI)v j = V j

where V j ∈ Ker(A − λI)k j−1
⊂ E. Thus, it follows by induction that Av j = λv j + V j ∈ E and since E is a

subspace of Rn, it follows that
k∑

j=1

c jAv j ∈ E

i.e., Av ∈ E and therefore AE ⊂ E.

Theorem 1. Let A be a real n × n matrix. Then

Rn = Es
⊕ Eu

⊕ Ec

where Es,Eu and Ec are the stable, unstable and center subspaces of (2.1) respectively; furthermore, Ea,Eu

and Ec are invariant with respect to the flow eAt of (2.1) respectively.

Proof. Since B = {u1, . . . ,uk,uk+1,vk+1, . . . ,um,vm} described at the beginning of this section is a basis

for Rn, it follows from the definition of Es,Eu and Ec that

Rn = Es
⊕ Eu

⊕ Ec

If x0 ∈ Es then

x0 =

n4∑
j=1

c jV j

where V j = v j or u j and
{
V j

}n∗

j=1
⊂ B is a basis for the stable subspace Es as described in Definition 1 .
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Then by the linearity of eAt, it follows that

eAtx0 =

n4∑
j=1

c jeAtV j

But

eAtV j = lim
k→∞

[
I + At + · · · +

Aktk

k!

]
V j ∈ E∗

since for j = 1, . . . ,ns by the above lemma AkV j ∈ Es and since Es is complete. Thus, for all t ∈ R, eAtx0 ∈ Es

and therefore eAtEs
⊂ Es; i.e., Es is invariant under the flow eAt. It can similarly be shown that Ew and Ec

are invariant under the flow eAt.

We next generalize the definition of sinks and sources of two-dimensional systems given in Section 1.5.

Definition 4. If all of the eigenvalues of A have negative (positive) real parts, the origin is called a sink

(source) for the linear system (2.1).

Theorem 2. The following statements are equivalent:

(a) For all x0 ∈ Rn, limt→∞ eAtx0 = 0 and for x0 , 0, limt→−∞

∣∣∣eAtx0

∣∣∣ = ∞.

(b) All eigenvalues of A have negative real part.

(c) There are positive constants a, c,m and M such that for all x0 ∈ Rn

∣∣∣eAtx0

∣∣∣ ≤Me−ct
|x0|

for t ≥ 0 and ∣∣∣eAtx0

∣∣∣ ≥ me−at
|x0|

for t ≤ 0.

Proof ( a⇒ b ): If one of the eigenvalues λ = a + ib has positive real part, a > 0, then by the theorem and

corollary in Section 1.8, there exists an x0 ∈ Rn, x0 , 0, such that
∣∣∣eAtx0

∣∣∣ ≥ eat
|x0|. Therefore

∣∣∣eAtx0

∣∣∣→∞ as

t→∞ i.e.,

lim
t→∞

eAtx0 , 0.

And if one of the eigenvalues of A has zero real part, say λ = ib, then by the corollary in Section 1.8,

there exists x0 ∈ Rn, x0 , 0 such that at least one component of the solution is of the form ctk cos bt or

ctk sin bt with k ≥ 0. And once again

lim
t→∞

eAtx0 , 0.

Thus, if not all of the eigenvalues of A have negative real part, there exists x0 ∈ Rn such that eA1x0 9 0

as t → ∞; i.e., a ⇒ b. (b ⇒ c) : If all of the eigenvalues of A have negative real part, then it follows

from the Jordan canonical form theorem and its corollary in Section 1.8 that there exist positive constants

a, c,m and M such that for all x0 ∈ Rn
∣∣∣eAtx0

∣∣∣ ≤ Me−ct
|x0| for t ≥ 0 and

∣∣∣eAtx0

∣∣∣ ≥ me−at
|x0| for t ≤ 0. (c⇒ a):
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If this last pair of inequalities is satisfied for all x0 ∈ Rn, it follows by taking the limit as t→ ±∞ on each

side of the above inequalities that

lim
t→∞

∣∣∣eAtx0

∣∣∣ = 0 and that lim
t→−∞

∣∣∣eAtx0

∣∣∣ = ∞

for x0 , 0. This completes the proof of Theorem 2.

The next theorem is proved in exactly the same manner as Theorem 2 above using the theorem and its

corollary in Section 1.8.

Theorem 3. The following statements are equivalent:

(a) For all x0 ∈ Rn
· limt→−∞ eAtx0 = 0 and for x0 , 0, limt→∞

∣∣∣eAtx0

∣∣∣ =∞.

(b) All eigenvalues of A have positive real part.

(c) There are positive constants a, c,m and M such that for all x0 ∈ Rn

∣∣∣eAtx0

∣∣∣ ≤Mect
|x0|

for t ≤ 0 and ∣∣∣eAtx0

∣∣∣ ≥ meat
|x0|

for t ≥ 0.

Corollary. If x0 ∈ Es, then eAtx0 ∈ Es for all t ∈ R and

lim
t→∞

eAtx0 = 0.

And if x0 ∈ Eu, then eAtx0 ∈ Eu for all t ∈ R and

lim
t→−∞

eAtx0 = 0.

Thus, we see that all solutions of (1) which start in the stable manifold Es of (1) remain in E∗ for all t

and approach the origin exponentially fast as t→ ∞; and all solutions of (1) which start in the unstable

manifold Eu of (1) remain in Eu for all t and approach the origin exponentially fast as t→ −∞.

2.9 Nonhomogeneous Linear Systems

In this section we solve the nonhomogeneous linear system

ẋ = Ax + b(t) (2.7)

where A is an n × n matrix and b(t) is a continuous vector valued function.
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Definition. A fundamental matrix solution of (2.1) is any nonsingular n × n matrix function Φ(t) that

seatisfies

Φ′(t) = AΦ(t) for all t ∈ R.

Note that according to the lemma in Section 1.4, Φ(t) = eAt is a fundamental matrix solution which

satisfies Φ(0) = I, the n × n identity matrix. Furthermore, any fundamental matrix solution Φ(t) of (2.7)

is given by Φ(t) = eAtC for some nonsingular matrix C. Once we have found a fundamental matrix

solution of (2.7), it is easy to solve the nonhomogeneous system (2.1). The result is given in the following

theorem.

Theorem 1. If Φ(t) is any fundamental matrix solution of (2.7), then the solution of the nonhomogeneous

linear system (2.1) and the initial condition x(0) = x0 is unique and is given by

x(t) = Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ. (2.8)

Proof. For the function x(t) defined above,

x′(t) =Φ′(t)Φ−1(0)x0 + Φ(t)Φ−1(t)b(t)

+

∫ t

0
Φ′(t)Φ−1(τ)b(τ)dτ

And since Φ(t) is a fundamental matrix solution of (2.1), it follows that

x′(t) = A
[
Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ

]
+ b(t)

= Ax(t) + b(t)

for all t ∈ R. And this completes the proof of the theorem.

Remark 1. If the matrix A in (2.7) is time dependent, A = A(t), then exactly the same proof shows that

the solution of the nonhomogenous linear system (2.7) and the initial condition x(0) = x0 is given by (2.8)

provided that Φ(t) is a fundamental matrix solution of (2.1) with a variable coefficient matrix A = A(t).

For the most part, we do not consider solutions of (2.1) with A = A(t) in this book. The reader should

consult [C/L], [H] or [W] for a discussion of this topic which requires series methods and the theory of

special functions.

Remark 2. With Φ(t) = eAt, the solution of the nonhomogeneous linear system (2.7), as given in the

above theorem, has the form

x(t) = eAtx0 + eAt
∫ t

0
e−Aτb(τ)dτ.
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CHAPTER 3

NONLINEAR SYSTEMS: LOCAL

THEORY

In Chapter 1 we saw that any linear system (2.1) has a unique solution through each point x0 in the phase

space Rn; the solution is given by x(t) = eAtx0 and it is defined for all t ∈ R. In this chapter we begin our

study of nonlinear systems of differential equations

ẋ = f(x) (2)

where f : E→ Rn and E is an open subset of Rn. We show that under certain conditions on the function f ,

the nonlinear system (2) has a unique solution through each point x0 ∈ E defined on a maximal interval

of existence (α, β) ⊂ R. In general, it is not possible to solve the nonlinear system (2); however, a great

deal of qualitative information about the local behavior of the solution is determined in this chapter. In

particular, we establish the Hartman-Grobman Theorem and the Stable Manifold Theorem which show

that topologically the local behavior of the nonlinear system (2) near an equilibrium point x0 where

f (x0) = 0 is typically determined by the behavior of the linear system (2.1) near the origin when the

matrix A = Df (x0), the derivative of f at x0. We also discuss some of the ramifications of these theorems

for two-dimensional systems when det Df (x0) , 0 and cite some of the local results of Andronov et al.

[A-I] for planar systems (2) with det Df (x0) = 0.
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3.1 Some Preliminary Concepts and Definitions

Before beginning our discussion of the fundamental theory of nonlinear systems of differential equations,

we present some preliminary concepts and definitions. First of all, in this book we shall only consider

autonomous systems of ordinary differential equations (2) as opposed to nonautonomous systems

ẋ = f(x, t) (3)

where the function f can depend on the independent variable t; however, any nonautonomous system

(3) with x ∈ Rn can be written as an autonomous system (2) with x ∈ Rn+1 simply by letting xn+1 = t

and ẋn+1 = 1. The fundamental theory for (2) and (3) does not differ significantly although it is possible

to obtain the existence and uniqueness of solutions of (3) under slightly weaker hypotheses on f as a

function of t; cf. for example Coddington and Levinson [C/L].

Notice that the existence of the solution of the elementary differential equation (2) is given by

x(t) = x(0) +

∫ t

0
f (s)ds

if f (t) is integrable. And in general, the differential equations (2) or (3) will have a solution if the function

f is continuous; cf. [C/L], p. 6. However, continuity of the function f in (2) is not sufficient to guarantee

uniqueness of the solution as the next example shows.

Example 1. The initial value problem

ẋ = 3x2/3

x(0) = 0

has two different solutions through the point (0, 0), namely

u(t) = t3

and

v(t) ≡ 0

for all t ∈ R. Clearly, each of these functions satisfies the differential equation for all t ∈ R as well as

the initial condition x(0) = 0. (The first solution u(t) = t3 can be obtained by the method of separation

of variables). Notice that the function f (x) = 3x2/3 is continuous at x = 0 but that it is not differentiable

there.

Another feature of nonlinear systems that differs from linear systems is that even when the function

f in (2) is defined and continuous for all x ∈ Rn, the solution x(t) may become unbounded at some finite

time t = β; i.e., the solution may only exist on some proper subinterval (α, β) ⊂ R. This is illustrated by
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the next example.

Example 2. Consider the initial value problem

ẋ = x2

x(0) = 1.

The solution, which can be found by the method of separation of variables, is given by

x(t) =
1

1 − t
.

This solution is only defined for t ∈ (−∞, 1) and

lim
t→1−

x(t) = ∞.

The interval (−∞, 1) is called the maximal interval of existence of the solution of this initial value

problem. Notice that the function x(t) = (1− t)−1 has another branch defined on the interval (1,∞);

however, this branch is not considered as part of the solution of the initial value problem since the initial

time t = 0 < (1,∞).

Before stating and proving the fundamental existence-uniqueness theorem for the nonlinear system

(1), it is first necessary to define some terminology and notation concerning the derivative Df of a func-

tion f : Rn
→ Rn.

Definition 1. The function f : Rn
→ Rn is differentiable at x0 ∈ Rn if there is a linear transformation

Df (x0) ∈ L (Rn) that satisfies

lim
|h|→0

|f (x0 + h) − f (x0) −Df (x0) h|
|h|

= 0

The linear transformation Df (x0) is called the derivative of f at x0.

Theorem 1. If f : Rn
→ Rn is differentiable at x0, then the partial derivatives

∂ fi
∂x j

, i, j = 1, . . . ,n, all

exist at x0 and for all x ∈ Rn,

Df (x0) x =

n∑
j=1

∂f
∂x j

(x0) x j.

Thus, if f is a differentiable function, the derivative Df is given by the n × n Jacobian matrix

Df =

[
∂ fi
∂x j

]
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Definition 2. Suppose that V1 and V2 are two normed linear spaces with respective norms ‖ · ‖1 and

‖ · ‖2; i.e., V1 and V2 are linear spaces with norms ‖ · ‖1 and ‖ · ‖2 satisfying a-c in Section 1.3 of Chapter 1

. Then

F: V1 → V2

is continuous at x0 ∈ V1 if for all ε > 0 there exists a δ > 0 such that x ∈ V1 and ‖x − x0‖1 < δ implies that

‖F(x) − F (x0)‖2 < ε.

And F is said to be continuous on the set E ⊂ V1 if it is continuous at each point x ∈ E. If F is

continuous on E ⊂ V1, we write F ∈ C(E).

Definition 3. Suppose that f : E → Rn is differentiable on E. Then f ∈ C1(E) if the derivative

Df : E→ L (Rn) is continuous on E.

The next theorem, gives a simple test for deciding whether or not a function f : E → Rn belongs to

C1(E).

Theorem 2. Suppose that E is an open subset of Rn and that f : E→ Rn. Then f ∈ C1(E) iff the partial

derivatives
∂ fi
∂x j

, i, j = 1, . . . ,n, exist and are continuous on E.

Remark 1. For E an open subset of Rn, the higher order derivatives Dkf (x0) of a function f : E→ Rn

are defined in a similar way and it can be shown that f ∈ Ck(E) if and only if the partial derivatives

∂k fi
∂x 1 · · · ∂x jk

with i, j1, . . . , jk = 1, . . . ,n, exist and are continuous on E. Furthermore, D2f (x0) : E × E → Rn and for

(x,y) ∈ E × E we have

D2f (x0) (x,y) =

n∑
j1, j2=1

∂2f (x0)
∂x j1∂x j2

x j1 y j2 .

Similar formulas hold for Dkf (x0) : (E × · · · × E)→ Rn.

A function f : E→ Rn is said to be analytic in the open set E ⊂ Rn if each component f j(x), j = 1, . . . ,n,

is analytic in E, i.e., if for j = 1, . . . ,n and x0 ∈ E, f j(x) has a Taylor series which converges to f j(x) in some

neighborhood of x0 in E.
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3.2 The Fundamental Existence-Uniqueness Theorem

In this section, we establish the fundamental existence-uniqueness theorem for a nonlinear autonomous

system of ordinary differential equations (2) under the hypothesis that f ∈ C1(E) where E is an open

subset of Rn. Picard’s classical method of successive approximations is used to prove this theorem.

The more modern approach based on the contraction mapping principle is relegated to the problems

at the end of this section. The method of successive approximations not only allows us to establish

the existence and uniqueness of the solution of the initial value problem associated with (2), but it also

allows us to establish the continuity and differentiability of the solution with respect to initial conditions

and parameters. This is done in the next section. The method is also used in the proof of the Stable

Manifold and in the proof of the Hartman-Grobman. The method of successive approximations is one

of the basic tools used in the qualitative theory of ordinary differential equations.

Definition 1. Suppose that f ∈ C(E) where E is an open subset of Rn. Then x(t) is a solution of the

differential equation (2) on an interval I if x(t) is differentiable on I and if for all t ∈ I, x(t) ∈ E and

x′(t) = f(x(t))

And given x0 ∈ E, x(t) is a solution of the initial value problem

ẋ = f(x)

x (t0) = x0

on an interval I if t0 ∈ I, x (t0) = x0 and x(t) is a solution of the differential equation (2) on the interval I.

In order to apply the method of successive approximations to establish the existence of a solution of

(2), we need to define the concept of a Lipschitz condition and show that C1 functions are locally Lipschitz.

Definition 2. Let E be an open subset of Rn. A function f : E → Rn is said to satisfy a Lipschitz

condition on E if there is a positive constant K such that for all x, y ∈ E

|f(x) − f(y)| ≤ K|x − y|.

The function f is said to be locally Lipschitz on E if for each point x0 ∈ E there is an ε-neighborhood

of x0,Nε (x0) ⊂ E and a constant K0 > 0 such that for all x,y ∈ Nε (x0)

|f(x) − f(y)| ≤ K0|x − y|.
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By an ε-neighborhood of a point x0 ∈ Rn, we mean an open ball of positive radius ε; i.e.,

Nε (x0) = {x ∈ Rn
||x − x0 |< ε} .

Lemma. Let E be an open subset of Rn and let f : E→ Rn. Then, if f ∈ C1(E), f is locally Lipschitz on E.

Proof. Since E is an open subset of Rn, given x0 ∈ E, there is an ε > 0 such that Nε (x0) ⊂ E. Let

K = max
|x−x0 |≤ε/2

‖Df(x)‖,

the maximum of the continuous function Df(x) on the compact set | x− x0 |≤ ε/2. Let N0 denote the

ε/2-neighborhood of x0,Nε/2 (x0). Then for x,y ∈ N0, set u = y−x. It follows that x + su ∈ N0 for 0 ≤ s ≤ 1

since N0 is a convex set. Define the function F : [0, 1]→ Rn by

F(s) = f(x + su).

Then by the chain rule,

F′(s) = Df(x + su)u

and therefore
f(y) − f(x) = F(1) − F(0)

=

∫ 1

0
F′(s)ds =

∫ 1

0
Df(x + su)uds.

It then follows from the lemma that

|f(y) − f(x)| ≤
∫ 1

0
|Df(x + su)u|ds

≤

∫ 1

0
‖Df(x + su)‖|u|ds

≤ K|u| = K|y − x|.

And this proves the lemma. Picard’s method of successive approximations is based on the fact that

x(t) is a solution of the initial value problem

ẋ = f(x)

x(0) = x0 (4)
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if and only if x(t) is a continuous function that satisfies the integral equation

x(t) = x0 +

∫ t

0
f(x(s))ds.

The successive approximations to the solution of this integral equation are defined by the sequence

of functions

u0(t) = x0

uk+1(t) = x0 +

∫ t

0
f (uk(s)) ds (5)

for k = 0, 1, 2, . . .. In order to illustrate the mechanics involved in the method of successive approxi-

mations, we use the method to solve an elementary linear differential equation.

Definition 3. Let V be a normed linear space. Then a sequence {uk} ⊂ V is called a Cauchy sequence

if for all ε > 0 there is an N such that k,m ≥ N implies that

‖uk − um‖ < ε.

The space V is called complete if every Cauchy sequence in V converges to an element in V.

The following theorem, establishes the completeness of the normed linear space C(I) with I = [−a, a].

Theorem. For I = [−a, a],C(I) is a complete normed linear space.

We can now prove the fundamental existence-uniqueness theorem for nonlinear systems.

Theorem (The Fundamental Existence-Uniqueness Theorem). Let E be an open subset of Rn con-

taining x0 and assume that f ∈ C1(E). Then there exists an a > 0 such that the initial value problem (4)

has a unique solution x(t) on the interval [−a, a].

Proof. Since f ∈ C1(E), it follows from the lemma that there is an ε neighborhood Nε (x0) ⊂ E and a

constant K > 0 such that for all x,y ∈ Nε (x0),

|f(x) − f(y)| ≤ K|x − y|.

Let b = ε/2. Then the continuous function f(x) is bounded on the compact set

N0 = {x ∈ Rn
||x − x0 |≤ b} .
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Let

M = max
x∈N0

|f(x)|.

Let the successive approximations uk(t) be defined by (5). Then assuming that there exists an a > 0

such that uk(t) is defined and continuous on [−a, a] and satisfies

max
[−a,a]
|uk(t) − x0| ≤ b, (6)

it follows that f (uk(t)) is defined and continuous on [−a, a] and therefore that

uk+1(t) = x0 +

∫ t

0
f (uk(s)) ds

is defined and continuous on [−a, a] and satisfies

|uk+1(t) − x0| ≤

∫ t

0
|f (uk(s))| ds ≤Ma

for all t ∈ [−a, a]. Thus, choosing 0 < a ≤ b/M, it follows by induction that uk(t) is defined and continuous

and satisfies (6) for all t ∈ [−a, a] and k = 1, 2, 3, . . ..

Next, since for all t ∈ [−a, a] and k = 0, 1, 2, 3, . . . ,uk(t) ∈ N0, it follows from the Lipschitz condition

satisfied by f that for all t ∈ [−a, a]

|u2(t) − u1(t)| ≤
∫ t

0
|f (u1(s)) − f (u0(s))| ds

≤ K
∫ t

0
|u1(s) − u0(s)| ds

≤ Ka max
[−a,a]
|u1(t) − x0|

≤ Kab.

And then assuming that

max
[−a,a]

∣∣∣u j(t) − u j−1(t)
∣∣∣ ≤ (Ka) j−1b (7)

for some integer j ≥ 2, it follows that for all t ∈ [−a, a]

∣∣∣u j+1(t) − u j(t)
∣∣∣ ≤ ∫ t

0

∣∣∣∣f (u j(s)
)
− f

(
u j−1(s)

)∣∣∣∣ ds

≤ K
∫ t

0

∣∣∣u j(s) − u j−1(s)
∣∣∣ ds

≤ Ka max
[−a,a|

∣∣∣u j(t) − u j−1(t)
∣∣∣

≤ (Ka) jb.
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Thus, it follows by induction that (7) holds for j = 2, 3, . . .. Setting α = and choosing 0 < a < 1/K, we

see that for m > k ≥ N and t ∈ [−a, a

|um(t) − uk(t)| ≤
m−1∑
j=k

∣∣∣u j+1(t) − u j(t)
∣∣∣

≤

∞∑
j=N

∣∣∣u j+1(t) − u j(t)
∣∣∣

≤

∞∑
j=N

α jb =
αN

1 − α
b.

This last quantity approaches zero as N→∞. Therefore, for all ε there exists an N such that m, k ≥ N

implies that

‖um − uk‖ = max
|−a,a|
|um(t) − uk(t)| < ε;

i.e., {uk} is a Cauchy sequence of continuous functions in C([−a, a]). I lows from the above theorem that

uk(t) converges to a continuous funs u(t) uniformly for all t ∈ [−a, a] as k→ ∞. And then taking the lim

both sides of equation (3) defining the successive approximations, w that the continuous function

u(t) = lim
k→∞

uk(t) (8)

satisfies the integral equation

u(t) = x0 +

∫ t

0
f(u(s))ds (9)

for all t ∈ [−a, a]. We have used the fact that the integral and the limit can be interchanged since the

limit in (8) is uniform for all t ∈ [−a, a]. Then since u(t) is continuous, f(u(t)) is continuous and by the

fundamental theorem of calculus, the right-hand side of the integral equation (9) is differentiable and

u′(t) = f(u(t))

for all t ∈ [−a, a]. Furthermore, u(0) = x0 and from (6) it follows that u(t) ∈ Nc (x0) ⊂ E for all t ∈ [−a, a].

Thus u(t) is a solution of the initial value problem (4) on [−a, a]. It remains to show that it is the only

solution.

Let u(t) and v(t) be two solutions of the initial value problem (4) on [−a, a]. Then the continuous
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function |u(t) − v(t)| achieves its maximum at some point t1 ∈ [−a, a]. It follows that

‖u − v‖ = max
[−a,a]
|u(t) − v(t)|

=

∣∣∣∣∣∣
∫ t1

0
f(u(s)) − f(v(s))ds

∣∣∣∣∣∣
≤

∫
|t1 |

0
|f(u(s)) − f(v(s))|ds

≤ K
∫
|t1 |

0
|u(s) − v(s)|ds

≤ Ka max |u(t) − v(t)|

≤ Ka‖u − v‖

But Ka < 1 and this last inequality can only be satisfied if ‖u − v‖ = 0. Thus, u(t) = v(t) on [−a, a].

We have shown that the successive approximations (5) converge uniformly to a unique solution of the

initial value problem (4) on the interval [−a, a] where a is any number satisfying 0 < a < min
(

b
M ,

1
K

)
Remark. Exactly the same method of proof shows that the initial value problem

ẋ = f(x)

x (t0) = x0

has a unique solution on some interval [t0 − a, t0 + a].

3.3 Dependence on Initial Conditions and Parameters

In this section we investigate the dependence of the solution of the initial value problem

ẋ = f(x)

x(0) = y (1)

on the initial condition y. If the differential equation depends on a parameter µ ∈ Rm, i.e., if the function

f (x) in (1) is replaced by f (x, µ), then the solution u(t,y,µ) will also depend on the parameter µ. Roughly

speaking, the dependence of the solution u(t,y,µ) on the initial condition y and the parameter µ is as

continuous as the function f. In order to establish this type of continuous dependence of the solution on

initial conditions and parameters, we first establish a result due to T.H. Gronwall.
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Lemma (Gronwall). Suppose that 1(t) is a continuous real valued function that satisfies 1(t) ≥ 0 and

1(t) ≤ C + K
∫ t

0
1(s)ds

for all t ∈ [0, a] where C and K are positive constants. It then follows that for all t ∈ [0, a],

1(t) ≤ CeKt

Proof

Let G(t) = C + K
∫ t

0 1(s)ds for t ∈ [0, a]. Then G(t) ≥ 1(t) and G(t) > 0 for all t ∈ [0, a]. It follows from the

fundamental theorem of calculus that

G′(t) = K1(t)

and therefore that

G′(t)
G(t)

=
K1(t)
G(t)

≤
KG(t)
G(t)

= K

for all t ∈ [0, a]. And this is equivalent to saying that

d
dt

(log G(t)) ≤ K

or

log G(t) ≤ Kt + log G(0)

or

G(t) ≤ G(0)eKt = CeKt

for all t ∈ [0, a], which implies that 1(t) ≤ CeKt for all t ∈ [0, a].

Theorem (Dependence on Initial Conditions).

Let E be an open subset of Rn containing x0 and assume that f ∈ C1(E). Then there exists an a > 0 and

aδ > 0 such that for all y ∈ Nδ (x0) the initial value problem

ẋ = f(x)

x(0) = y

has a unique solution u(t,y) with u ∈ C1(G) where G = [−a, a] ×N6 (x0) ⊂ Rn+1; furthermore, for each
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y ∈ Nδ (x0) ,u(t,y) is a twice continuously differentiable function of t for t ∈ [−a, a].

Proof.

Since f ∈ C1(E), it follows from the lemma in Section 2.2 that there is an ε-neighborhood Nε (x0) ⊂ E and

a constant K > 0 such that for all x and y ∈ Nε (x0),

|f(x) − f(y)| ≤ K|x − y|

As in the proof of the fundamental existence theorem, let N0 = {x ∈ Rn | |x − x0| ≤ ε/2}, let M0 be the

maximum of |f(x)| on N0 and let M1 be the maximum of ‖Df(x)‖ on N0. Let δ = ε/4, and for y ∈ Nδ (x0)

define the successive approximations uk(t,y) as

u0(t,y) = y

uk+1(t,y) = y +

∫ t

0
f
(
uk(s,y)

)
ds (2)

Assume that uk(t,y) is defined and continuous for all (t,y) ∈ G = [−a, a]× Nδ (x0) and that for all

y ∈ Nδ (x0)

∥∥∥uk(t,y) − x0

∥∥∥ < ε/2 (3)

where ‖ · ‖ denotes the maximum over all t ∈ [−a, a]. This is clearly satisfied for k = 0. And assuming

this is true for k, it follows that uk+1(t,y), defined by the above successive approximations, is continuous

on G. This follows since a continuous function of a continuous function is continuous and since the

above integral of the continuous function f
(
uk(s, y)

)
is continuous in t by the fundamental theorem of

calculus and also in y; cf. Rudin [R] or Carslaw [C]. We also have

∥∥∥uk+1(t,y) − y
∥∥∥ ≤ ∫ t

0

∣∣∣f (uk(s,y)
)∣∣∣ ds ≤M0a

for t ∈ [−a, a] and y ∈ Nδ (x0) ⊂ N0. Thus, for t ∈ [−a, a] and y ∈ Nδ (x0) with δ = ε/4, we have

∥∥∥uk+1(t,y) − x0

∥∥∥ ≤ ∥∥∥uk+1(t,y) − y
∥∥∥ +

∥∥∥y − x0

∥∥∥
≤M0a + ε/4 < ε/2

provided M0a < ε/4, i.e., provided a < ε/ (4M0). Thus, the above induction hypothesis holds for all

k = 1, 2, 3, . . . and (t, y) ∈ G provided a < ε/ (4M0).

We next show that the successive approximations uk(t, y) converge uniformly to a continuous function

u(t,y) for all (t,y) ∈ G as k→∞. As in the proof of the fundamental existence theorem,
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∥∥∥u2(t,y) − u1(t,y)
∥∥∥ ≤ Ka

∥∥∥u1(t,y) − y
∥∥∥

≤ Ka
∥∥∥u1(t,y) − x0

∥∥∥ + Ka
∥∥∥y − x0

∥∥∥
≤ Ka(ε/2 + ε/4) ≤ Kaε

for (t,y) ∈ G. And then it follows exactly as in the proof of the fundamental existence theorem in

Section 2.2 that

∥∥∥uk+1(t,y) − uk(t,y)
∥∥∥ ≤ (Ka)kε

for (t,y) ∈ G and consequently that the successive approximations converge uniformly to a continuous

function u(t,y) for (t,y) ∈ G as k→∞ provided a < 1/K. Furthermore, the function u(t,y) satisfies

u(t,y) = y +

∫ t

0
f(u(s,y))ds

for (t,y) ∈ G and also u(0,y) = y. And it follows from the inequality (3) that u(t,y) ∈ Nε/2 (x0) for all

(t,y) ∈ G. Thus, by the fundamental theorem of calculus and the chain rule, it follows that

u̇(t,y) = f(u(t,y))

and that

ü(t,y) = Df(u(t,y))u̇(t,y)

for all (t, y) ∈ G; i.e., u(t, y) is a twice continuously differentiable function of t which satisfies the initial

value problem (1) for all (t, y) ∈ G. The uniqueness of the solution u(t, y) follows from the fundamental

theorem in Section 2.2.

We now show that u(t, y) is a continuously differentiable function of y for all (t, y) ∈ [−a, a]×Nδ/2 (x0).

In order to do this, fix y0 ∈ Nδ/2 (x0) and choose h ∈ Rn such that |h| < δ/2. Then y0 + h ∈ Nδ (x0). Let

u
(
t,y0

)
and u

(
t,y0 + h

)
be the solutions of the initial value problem (1) with y = y0 and with y = y0 + h

respectively. It then follows that

∣∣∣u (
t,y0 + h

)
− u

(
t,y0

)∣∣∣ ≤ |h| + ∫ t

0

∣∣∣f (u (
s,y0 + h

))
− f

(
u
(
s,y0

))∣∣∣ ds

≤ |h| + K
∫ t

0

∣∣∣u (
s,y0 + h

)
− u

(
s,y0

)∣∣∣ ds

for all t ∈ [−a, a]. Thus, it follows from Gronwall’s Lemma that

∣∣∣u (
t,y0 + h

)
− u

(
t,y0

)∣∣∣ ≤ |h|eK|t| (4)

for all t ∈ [−a, a]. We next define Φ
(
t, y0

)
to be the fundamental matrix solution of the initial value
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problem

Φ̇ = A
(
t,y0

)
Φ

Φ
(
0,y0

)
= I (5)

with A
(
t, y0

)
= Df

(
u
(
t,y0

))
and I the n × n identity matrix. The existence and continuity of Φ

(
t, y0

)
on

some interval [−a, a] follow from the method of successive approximations as in problem 4 of Problem Set

2 and problem 4 in Problem Set 3. It then follows from the initial value problems for u
(
t, y0

)
, u

(
t,y0 + h

)
and Φ

(
t,y0

)
and Taylor’s Theorem,

f(u) − f (u0) = Df (u0) (u − u0) + R (u,u0)

where |R (u,u0)| / |u − u0| → 0 as |u − u0| → 0, that

| u
(
t,y0

)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h

∣∣∣∣∣∣≤
∫ t

0

∣∣∣∣∣∣ f (u (
s,y0

))
− f

(
u
(
s,y0 + h

))
+ Df

(
u
(
s,y0

))
Φ

(
s,y0

)
h | ds

≤

∫ t

0

∥∥∥Df
(
u
(
s,y0

))∥∥∥ ∣∣∣u (
s,y0

)
− u

(
s,y0 + h

)
+ Φ

(
s,y0

)
h
∣∣∣ ds

+

∫ t

0

∣∣∣R (
u
(
s,y0 + h

)
,u

(
s,y0

))∣∣∣ ds (6)

Since |R (u,u0)| / |u − u0| → 0 as |u − u0| → 0 and since u(s,y) is continuous on G, it follows that given

any ε0 > 0, there exists a δ0 > 0 such that if |h| < δ0 then
∣∣∣R (

u
(
s,y0

)
,u

(
s,y0 + h

))∣∣∣ < ε0

∣∣∣u (
s,y0

)
− u

(
s,y0 + h

)∣∣∣
for all s ∈ [−a, a]. Thus, if we let

1(t) =
∣∣∣u (

t,y0
)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h
∣∣∣

it then follows from (4) and (6) that for all t ∈ [−a, a], y0 ∈ Nδ/2 (x0) and |h| < min (δ0, δ/2) we have

1(t) ≤M1

∫ t

0
1(s)ds + ε0|h|aeKa.

Hence, it follows from Gronwall’s Lemma that for any given ε0 > 0

1(t) ≤ ε0|h|aeKaeM1a
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for all t ∈ [−a, a] provided |h| < min (δ0, δ/2). Thus,

lim
|h|→0

∣∣∣u (
t,y0

)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h
∣∣∣

|h|
= 0

uniformly for all t ∈ [−a, a]. Therefore, according to Definition 1 in Section 2.1,

∂u
∂y

(
t,y0

)
= Φ

(
t,y0

)
for all t ∈ [−a, a] where Φ

(
t, y0

)
is the fundamental matrix solution of the initial value problem (5) which

is continuous in t and in y0 for all t ∈ [−a, a] and y0 ∈ Nδ/2 (x0). This completes the proof of the theorem.

Corollary. Under the hypothesis of the above theorem,

Φ(t,y) =
∂u
∂y

(t,y)

for t ∈ [−a, a] and y ∈ Nδ (x0) if and only if Φ(t, y) is the fundamental matrix solution of

Φ = Df[u(t,y)]Φ

Φ(0,y) = I

for t ∈ [−a, a] and y ∈ Nδ (x0).

Remark 1. A similar proof shows that if f ∈ Cr(E) then the solution u(t,y) of the initial value problem

(1) is in Cr(G) where G is defined as in the above theorem. And if f(x) is a (real) analytic function for

x ∈ E then u(t,y) is analytic in the interior of G; cf. [C/L].

Remark 2. If x0 is an equilibrium point of (1), i.e., if f (x0) = 0 so that u (t, x0) = x0 for all t ∈ R, then

Φ (t, x0) =
∂u
∂x0

(t, x0)

satisfies
Φ̇ = Df (x0) Φ

Φ (0, x0) = I.

And according to the Fundamental Theorem for Linear Systems

Φ (t, x0) = eDf(x0)t.

Remark 3. It follows from the continuity of the solution u(t,y) of the initial value problem (1) that
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for each t ∈ [−a, a]

lim
y→x0

u(t,y) = u (t, x0) .

It follows from the inequality (4) that this limit is uniform for all t ∈ [−a, a]. We prove a slightly

stronger version of this result in Theorem 4 of the next section.

Theorem 2 (Dependence on Parameters). Let E be an open subset of Rn+m containing the point(
x0, µ0

)
where x0 ∈ Rn and µ0 ∈ Rm and assume that f ∈ C1(E). It then follows that there exists an a > 0

and a δ > 0 such that for all y ∈ Nδ (x0) and µ ∈ Nδ
(
µ0

)
, the initial value problem

ẋ = f(x,µ)

x(0) = y

has a unique solution u(t,y,µ) with u ∈ C1(G) where G = [−a, a]× Nδ (x0) ×Nδ
(
µ0

)
.

This theorem follows immediately from the previous theorem by replacing the vectors x0, x, ẋ and y

by the vectors
(
x0, µ0

)
, (x, µ), (ẋ, 0) and (y,µ) or it can be proved directly using Gronwall’s Lemma and

the method of successive approximations.

Lemma 1. Let E be an open subset of Rn containing x0 and suppose f ∈ C1(E). Let u1(t) and u2(t) be

solutions of the initial value problem (1) on the intervals I1 and I2. Then 0 ∈ I1 ∩ I2 and if I is any open

interval containing 0 and contained in I1 ∩ I2, it follows that u1(t) = u2(t) for all t ∈ I. Proof. Since u1(t)

and u2(t) are solutions of the initial value problem (1) on I1 and I2 respectively, it follows from Definition

1 in Section 2.2 that 0 ∈ I1 ∩ I2. And if I is an open interval containing 0 and contained in I1 ∩ I2, then

the fundamental existence-uniqueness theorem in Section 2.2 implies that u1(t) = u2(t) on some open

interval (−a, a) ⊂ I. Let I∗ be the union of all such open intervals contained in I. Then I∗ is the largest

open interval contained in I on which u1(t) = u2(t). Clearly, I∗ ⊂ I and if I∗ is a proper subset of I, then

one of the endpoints t0 of I∗ is contained in I ⊂ I1 ∩ I2. It follows from the continuity of u1(t) and u2(t) on

I that

lim
t→t0

u1(t) = lim
t→t0

u2(t).

Call this common limit u0. It then follows from the uniqueness of solutions that u1(t) = u2(t) on some

interval I0 = (t0 − a, t0 + a) ⊂ I. Thus, u1(t) = u2(t) on the interval I∗ ∪ I0 ⊂ I and I∗ is a proper subset of

I∗∪ I0. But this contradicts the fact that I∗ is the largest open interval contained in I on which u1(t) = u2(t).

Therefore, I∗ = I and we have u1(t) = u2(t) for all t ∈ I.

Theorem 1. Let E be an open subset of Rn and assume that f ∈ C1(E). Then for each point x0 ∈ E, there

is a maximal interval J on which the initial value problem (1) has a unique solution, x(t); i.e., if the initial

value problem has a solution y(t) on an interval I then I ⊂ J and y(t) = x(t) for all t ∈ I. Furthermore, the
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maximal interval J is open; i.e., J = (α, β).

Proof. By the fundamental existence-uniqueness theorem in Section 2.2, the initial value problem (1)

has a unique solution on some open interval (−a, a). Let (α, β) be the union of all open intervals I such

that (1) has a solution on I. We define a function x(t) on (α, β) as follows: Given t ∈ ( α, β ), t belongs to

some open interval I such that (1) has a solution u(t) on I; for this given t ∈ (α, β), define x(t) = u(t). Then

x(t) is a well-defined function of t since if t ∈ I1 ∩ I2 where I1 and I2 are any two open intervals such that

(1) has solutions u1(t) and u2(t) on I1 and I2 respectively, then by the lemma u1(t) = u2(t) on the open

interval I1 ∩ I2. Also, x(t) is a solution of (1) on (α, β) since each point t ∈ (α, β) is contained in some open

interval I on which the initial value problem (1) has a unique solution u(t) and since x(t) agrees with

u(t) on I. The fact that J is open follows from the fact that any solution of (1) on an interval (α, β] can be

uniquely continued to a solution on an interval (α, β + a) with a > 0 as in the proof of Theorem 2 below.

Definition. The interval (α, β) in Theorem 1 is called the maximal interval of existence of the solution

x(t) of the initial value problem (1) or simply the maximal interval of existence of the initial value problem

(1).

Theorem 2. Let E be an open subset of Rn containing x0, let f ∈ C1(E), and let (α, β) be the maximal

interval of existence of the solution x(t) of the initial value problem (1). Assume that β < ∞. Then given

any compact set K ⊂ E, there exists a t ∈ (α, β) such that x(t) < K.

Proof. Since f is continuous on the compact set K, there is a positive number M such that |f(x)| ≤ M

for all x ∈ K. Let x(t) be the solution of the initial value problem (1) on its maximal interval of existence

(α, β) and assume that β < ∞ and that x(t) ∈ K for all t ∈ (α, β). We first show that limt→β− x(t) exists. If

α < t1 < t2 < β then

|x (t1) − x (t2)| ≤
∫ t2

t1

|f(x(s))|ds ≤M |t2 − t1| .

Thus as t1 and t2 approach β from the left, |x (t2) − x (t1)| → 0 which, by the Cauchy criterion for

convergence in Rn (i.e., the completeness of Rn ) implies that limt→β− x(t) exists. Let x1 = limt→β− x(t).

Then x1 ∈ K ⊂ E since K is compact. Next define the function u(t) on (α, β] by

u(t) =

 x(t) for t ∈ (α, β)

x1 for t = β.

Then u(t) is differentiable on (α, β]. Indeed,

u(t) = x0 +

∫ t

0
f(u(s))ds
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which implies that

u′(β) = f(u(β));

i.e., u(t) is a solution of the initial value problem (1) on (α, β]. The function u(t) is called the continuation

of the solution x(t) to ( α, β]. Since x1 ∈ E, it follows from the fundamental existence-uniqueness theorem

in Section 2.2 that the initial value problem ẋ = f(x) together with x(β) = x1 has a unique solution x1(t)

on some interval (β − a, β + a). By the above lemma, x1(t) = u(t) on (β − a, β) and x1(β) = u(β) = x1. So if

we define

v(t) =

 u(t) for t ∈ (α, β]

x1(t) for t ∈ [β, β + a),

then v(t) is a solution of the initial value problem (1) on (α, β + a). But this contradicts the fact that (α, β)

is the maximal interval of existence for the initial value problem (1). Hence, if β < ∞, it follows that

there exists a t ∈ (α, β) such that x(t) < K. If (α, β) is the maximal interval of existence for the initial

value problem (1) then 0 ∈ (α, β) and the intervals [0, β ) and ( α, 0] are called the right and left maximal

intervals of existence respectively. Essentially the same proof yields the following result.

Theorem 3. Let E be an open subset of Rn containing x0, let f ∈ C1(E), and let [0, β) be the right

maximal interval of existence of the solution x(t) of the initial value problem (1). Assume that β < ∞.

Then given any compact set K ⊂ E, there exists a t ∈ (0, β) such that x(t) < K.

Corollary 1. Under the hypothesis of the above theorem, if β < ∞ and if limt→β− x(t) exists then

limt→β− x(t) ∈ Ė.

Proof. If x1 = limt→β− x(t), then the function

u(t) =

 x(t) for t ∈ [0, β)

x1 for t = β

is continuous on [0, β]. Let K be the image of the compact set [0, β] under the continuous map u(t); i.e.,

K =
{
x ∈ Rn

| x = u(t) for some t ∈ [0, β]
}
.

Then K is compact. Assume that x1 ∈ E. Then K ⊂ E and it follows from Theorem 3 that there exists a

t ∈ (0, β) such that x(t) < K. This is a contradiction and therefore x1 < E. But since x(t) ∈ E for all t ∈ [0, β),

it follows that x1 = limt→β− x(t) ∈ Ē. Therefore x1 ∈ Ē ∼ E; i.e., x1 ∈ Ė.

Corollary 2. Let E be an open subset of Rn containing x0, let f ∈ C1(E), and let [0, β) be the right

maximal interval of existence of the solution x(t) of the initial value problem (1). Assume that there exists

a compact set K ⊂ E such that

{
y ∈ Rn

| y = x(t) for some t ∈ [0, β)
}
⊂ K.
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It then follows that β = ∞; i.e. the initial value problem (1) has a solution x(t) on [0,∞).

Proof. This corollary is just the contrapositive of the statement in Theorem 3.

We next prove the following theorem which strengthens the result on uniform convergence with

respect to initial conditions in Remark 3 of Section 2.3.

Theorem 4. Let E be an open subset of Rn containing x0 and let f ∈ C1(E). Suppose that the initial

value problem (1) has a solution x (t, x0) defined on a closed interval [a, b]. Then there exists a δ > 0 and

a positive constant K such that for all y ∈ Nδ (x0) the initial value problem

ẋ = f(x)

ẋ(0) = y (2)

has a unique solution x(t,y) defined on [a, b] which satisfies

∣∣∣x(t,y) − x (t, x0)
∣∣∣ ≤ ∣∣∣y − x0

∣∣∣ eK|t|

and

lim
y→x0

x(t,y) = x (t, x0)

uniformly for all t ∈ [a, b].

Remark 1. If in Theorem 4 we have a function f (x, µ) depending on a parameter µ ∈ Rm which

satisfies f ∈ C1(E) where E is an open subset of Rn+m containing ( x0, µ0 ), it can be shown that if for µ = µ0

the initial value problem (1) has a solution x
(
t, x0, µ0

)
defined on a closed interval a ≤ t ≤ b, then there is

a δ > 0 and a K > 0 such that for all y ∈ Nδ (x0) and µ ∈ Nδ
(
µ0

)
the initial value problem

ẋ = f(x,µ)

x(0) = y

has a unique solution x(t,y,µ) defined for a ≤ t ≤ b which satisfies

∣∣∣x(t,y,µ) − x
(
t, x0, µ0

)∣∣∣ ≤ ~∣∣∣y − x0

∣∣∣ +
∣∣∣µ − µ0

∣∣∣] eK|t|

and

lim
(y,µ)→(x0,µ0)

x(t,y,µ) = x
(
t, x0, µ0

)
uniformly for all t ∈ [a, b]. In order to prove this theorem, we first establish the following lemma.
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Lemma 2. Let E be an open subset of Rn and let A be a compact subset of E. Then if f : E → Rn is

locally Lipschitz on E, it follows that f satisfies a Lipschitz condition on A.

Proof. Let M be the maximal value of the continuous function f on the compact set A. Suppose that

f does not satisfy a Lipschitz condition on A. Then for every K > 0, we can find x,y ∈ A such that

|f(y) − f(x)| > K|y − x|.

In particular, there exist sequences xn and yn in A such that

∣∣∣f (yn
)
− f (xn)

∣∣∣ > n
∣∣∣yn − xn

∣∣∣ (*)

for n = 1, 2, 3, . . .. Since A is compact, there are convergent subsequences, call them xn and yn for

simplicity in notation, such that xn → x∗ and yn → y∗ with x∗ and y∗ in A. It follows that x∗ = y∗ since for

all n = 1, 2, 3, . . . ∣∣∣y∗ − x∗
∣∣∣ = lim

n→∞

∣∣∣yn − xn

∣∣∣ ≤ 1
n

∣∣∣f (yn
)
− f (xn)

∣∣∣ ≤ 2M
n
.

Now, by hypotheses, there exists a neighborhood N0 of x∗ and a constant K0 such that f satisfies a

Lipschitz condition with Lipschitz constant K0 for all x and y ∈ N0. But since xn and yn approach x∗ as

n→∞, it follows that xn and yn are in N0 for n sufficiently large; i.e., for n sufficiently large

∣∣∣f (yn
)
− f (xn)

∣∣∣ ≤ K
∣∣∣yn − xn

∣∣∣ .
But for n ≥ K, this contradicts the above inequality (*) and this establishes the lemma.

Proof (of Theorem 4). Since [a, b] is compact and x (t, x0) is a continuous function of t, {x ∈ Rn
| x = x (t, x0)

and a ≤ t ≤ b} is a compact subset of E. And since E is open, there exists an ε > 0 such that the compact

set

A = {x ∈ Rn
||x − x (t, x0) |≤ ε and a ≤ t ≤ b}

is a subset of E. Since f ∈ C1(E), it follows from the lemma in Section 2.2 that f is locally Lipschitz in E;

and then by the above lemma, f satisfies a Lipschitz condition

|f(y) − f(x)| ≤ K|y − x|

for all x,y ∈ A. Choose δ > 0 so small that δ ≤ ε and δ ≤ εe−K(b−a). Let y ∈ Nδ (x0) and let x(t,y) be the

solution of the initial value problem (2) on its maximal interval of existence (α, β). We shall show that

[a, b] ⊂ (α, β). Suppose that β ≤ b. It then follows that x(t,y) ∈ A for all t ∈ (α, β) because if this were not
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true then there would exist a t∗ ∈ (α, β) such that x (t, x0) ∈ A for t ∈ (α, t∗] and x
(
t∗,y

)
∈ Ȧ. But then

∣∣∣x(t,y) − x (t, x0)
∣∣∣ ≤ ∣∣∣y − x0

∣∣∣ +

∫ t

0
| f(x(s,y)) − f (x (s, x0) | ds

≤

∣∣∣y − x0

∣∣∣ + K
∫ t

0

∣∣∣x(s,y) − x (s, x0)
∣∣∣ ds

for all t ∈ (α, t∗]. And then by Gronwall’s Lemma in Section 2.3, it follows that

∣∣∣x (
t∗,y

)
− x (t∗, x0)

∣∣∣ ≤ ∣∣∣y − x0

∣∣∣ eK|t∗ | < δeK(b−a) < ε

since t∗ < β ≤ b. Thus x
(
t∗,y

)
is an interior point of A, a contradiction. Thus, x(t, y) ∈ A for all t ∈ (α, β).

But then by Theorem 2, (α, β) is not the maximal interval of existence of x(t,y), a contradiction. Thus

b < β. It is similarly proved that α < a. Hence, for all y ∈ Nδ (x0), the initial value problem (2) has a

unique solution defined on [a, b]. Furthermore, if we assume that there is a t∗ ∈ [a, b) such that x(t,y) ∈ A

for all t ∈ [a, t∗) and x
(
t∗,y

)
∈ Ȧ, a repeat of the above argument based on Gronwall’s Lemma leads to a

contradiction and shows that x(t,y) ∈ A for all t ∈ [a, b] and hence that

∣∣∣x(t,y) − x (t, x0)
∣∣∣ ≤ ∣∣∣y − x0

∣∣∣ eK|t|

for all t ∈ [a, b]. It then follows that

lim
y→x0

x(t,y) = x (t, x0)

uniformly for all t ∈ [a, b].

3.4 The Flow Defined by a Differential Equation

In Section 1.9 of Chapter 1, we defined the flow, eAt : Rn
→ Rn, of the linear system

ẋ = Ax.

The mapping φt = eAt satisfies the following basic properties for all x ∈ Rn :

(i) φ0(x) = x

(ii) φs

(
φt(x)

)
= φs+t(x) for all s, t ∈ R

(iii) φ−t

(
φt(x)

)
= φt

(
φ−t(x)

)
= x for all t ∈ R.

Property (i) follows from the definition of eAt , property (ii) follows from Proposition 2 in Section 1.3

of Chapter 1, and property (iii) follows from Corollary 2 in Section 1.3 of Chapter 1. In this section, we
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define the flow, φt, of the nonlinear system

ẋ = f(x) (1)

and show that it satisfies these same basic properties. In the following definition, we denote the

maximal interval of existence (α, β) of the solution φ (t, x0) of the initial value problem

ẋ = f(x)

x(0) = x0 (2)

by I (x0) since the endpoints α and β of the maximal interval generally depend on x0; cf. problems 1(a)

and (d) in Section 2.4.

Definition 1. Let E be an open subset of Rn and let f ∈ C1(E). For x0 ∈ E, let φ (t, x0) be the solution of

the initial value problem (2) defined on its maximal interval of existence I (x0). Then for t ∈ I (x0), the set

of mappings φt defined by

φt (x0) = φ (t, x0)

is called the flow of the differential equation (1) or the flow defined by the differential equation (1); φt is

also referred to as the flow of the vector field f(x).

If we think of the initial point x0 as being fixed and let I = I (x0), then the mapping φ (·, x0) : I → E

defines a solution curve or trajectory of the system (1) through the point x0 ∈ E. As usual, the mapping

φ (·, x0) is identified with its graph in I × E and a trajectory is visualized as a motion along a curve Γ

through the point x0 in the subset E of the phase space Rn; cf. Figure 1. On the other hand, if we think of

the point x0 as varying throughout K ⊂ E, then the flow of the differential equation (1), φt : K → E can

be viewed as the motion of all the points in the set K; cf. Figure 2.
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If we think of the differential equation (1) as describing the motion of a fluid, then a trajectory of (1)

describes the motion of an individual particle in the fluid while the flow of the differential equation (1)

describes the motion of the entire fluid. We now show that the basic properties (i)-(iii) of linear flows are

also satisfied by nonlinear flows. But first we extend Theorem 1 of Section 2.3, establishing that φ (t, x0)

is a locally smooth function, to a global result. Using the same notation as in Definition 1, let us define

the set Ω ⊂ R × E as

Ω = {(t, x0) ∈ R × E | t ∈ I (x0)} .

Theorem 1. Let E be an open subset of Rn and let f ∈ C1(E). Then Ω is an open subset of R × E and

φ ∈ C1(Ω).

Proof. If (t0, x0) ∈ Ω and t0 > 0, then according to the definition of the set Ω, the solution x(t) = φ (t, x0)

of the initial value problem (2) is defined on [0, t0]. Thus, as in the proof of Theorem 2 in Section 2.4, the

solution x(t) can be extended to an interval [0, t0 + ε] for some ε > 0; i.e., φ (t, x0) is defined on the closed

interval [t0 − ε, t0 + ε]. It then follows from Theorem 4 in Section 2.4 that there exists a neighborhood of

x0,Nδ (x0), such that

φ(t,y) is defined on [t0 − ε, t0 + ε] × Nδ (x0); i.e., (t0 − ε, t0 + ε) × Nδ (x0) ⊂ Ω. Therefore, Ω is open in

R × E. It follows from Theorem 4 in Section 2.4 that φ ∈ C1(G) where G = (t0 − ε, t0 + ε) × Nδ (x0). A

similar proof holds for t0 ≤ 0, and since ( t0, x0 ) is an arbitrary point in Ω, it follows that φ ∈ C1(Ω).

Remark. Theorem 1 can be generalized to show that if f ∈ Cr(E) with r ≥ 1, then φ ∈ Cr(Ω) and that
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if f is analytic in E, then φ is analytic in Ω.

Theorem 2. Let E be an open set of Rn and let f ∈ C1(E). Then for all x0 ∈ E, if t ∈ I (x0) and

s ∈ I
(
φt (x0)

)
, it follows that s + t ∈ I (x0) and

φs+t (x0) = φs

(
φt (x0)

)
.

Proof. Suppose that s > 0, t ∈ I (x0) and s ∈ I
(
φt (x0)

)
. Let the maximal interval I (x0) = (α, β) and

define the function x : (α, s + t]→ E by

x(r) =


φ (r, x0) if α < r ≤ t

φ
(
r − t, φt (x0)

)
if t ≤ r ≤ s + t.

Then x(r) is a solution of the initial value problem (2) on (α, s+t). Hence s+t ∈ I (x0) and by uniqueness

of solutions

φs+t (x0) = x(s + t) = φ
(
s, φt (x0)

)
= φs

(
φt (x0)

)
.

If s = 0 the statement of the theorem follows immediately. And if s < 0, then we define the function

x : [s + t, β)→ E by

x(t) =


φ (r, x0) if t ≤ r < β

φ
(
r − t, φt (x0)

)
if s + t ≤ r ≤ t.

Then x(r) is a solution of the initial value problem (2) on [s+ t, β) and the last statement of the theorem

follows from the uniqueness of solutions as above.

Theorem 3. Under the hypotheses of Theorem 1, if (t, x0) ∈ Ω then there exists a neighborhood U of

x0 such that {t} ×U ⊂ Ω. It then follows that the set V = φt(U) is open in E and that

φ−t

(
φt(x)

)
= x for all x ∈ U

and

φt

(
φ−t(y)

)
= y for all y ∈ V.

Proof. If (t, x0) ∈ Ω then if follows as in the proof of Theorem 1 that there exists a neighborhood of

x0,U = Nδ (x0), such that (t − ε, t + ε) × U ⊂ Ω; thus, {t} × U ⊂ Ω. For x ∈ U, let y = φt(x) for all t ∈ I(x).

Then −t ∈ I(y) since the function h(s) = φ(s + t,y) is a solution of (1) on [−t, 0] that satisfies h(−t) = y;

i.e., φ−t is defined on the set V = φt(U). It then follows from Theorem 2 that φ−t

(
φt(x)

)
= φ0(x) = x for

all x ∈ U and that φt

(
φ−t(y)

)
= φ0(y) = y for all y ∈ V. It remains to prove that V is open. Let V∗ ⊃ V

be the maximal subset of E on which φ−t is defined. V∗ is open because Ω is open and φ−t : V∗ → E is

80



Nonlinear Systems

continuous because by Theorem 1, φ is continuous. Therefore, the inverse image of the open set U under

the continuous map φ−t, i.e., φt(U), is open in E. Thus, V is open in E.

In Chapter 3 we show that the time along each trajectory of (1) can be rescaled, without affecting

the phase portrait of (1), so that for all x0 ∈ E, the solution φ (t, x0) of the initial value problem (2)

is defined for all t ∈ R; i.e., for all x0 ∈ E, I (x0) = (−∞,∞). This rescaling avoids some of the com-

plications found in stating the above theorems. Once this rescaling has been made, it follows that

Ω = R × E, φ ∈ C1(R × E), φt ∈ C1(E) for all t ∈ R, and properties (i)-(iii) for the flow of the nonlinear

system (1) hold for all t ∈ R and x ∈ E just as for the linear flow eAt. In the remainder of this chapter, and

in particular in Sections 2.7 and 2.8 of this chapter, it will be assumed that this rescaling has been made

so that for all x0 ∈ E, φ (t, x0) is defined for all t ∈ R; i.e., we shall assume throughout the remainder of

this chapter that the flow of the nonlinear system (1) φt ∈ C1(E) for all t ∈ R.

Definition 2. Let E be an open subset of Rn, let f ∈ C1(E), and let φt : E → E be the flow of the

differential equation (1) defined for all t ∈ R. Then a set S ⊂ E is called invariant with respect to the flow

φt if φt(S) ⊂ S for all t ∈ R and S is called positively (or negatively) invariant with respect to the flow φt

if φt(S) ⊂ S for all t ≥ 0 (or t ≤ 0 ). In Section 1.9 of Chapter 1 we showed that the stable, unstable and

center subspaces of the linear system ẋ = Ax are invariant under the linear flow φt = eAt. A similar result

is established in Section 2.7 for the nonlinear flow φt of (1).

3.5 Linearization

A good place to start analyzing the nonlinear system

ẋ = f(x) (1)

is to determine the equilibrium points of (1) and to describe the behavior of (1) near its equilibrium

points. In the next two sections it is shown that the local behavior of the nonlinear system (1) near a

hyperbolic equilibrium point x0 is qualitatively determined by the behavior of the linear system

ẋ = Ax, (2)

with the matrix A = Df (x0), near the origin. The linear function Ax = D f (x0) x is called the linear part

of f at x0.

Definition 1. A point x0 ∈ Rn is called an equilibrium point or critical point of (1) if f (x0) = 0. An

equilibrium point x0 is called a hyperbolic equilibrium point of (1) if none of the eigenvalues of the matrix

Df (x0) have zero real part. The linear system (2) with the matrix A = Df (x0) is called the linearization of
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(1) at x0.

If x0 = 0 is an equilibrium point of (1), then f(0) = 0 and, by Taylor’s Theorem,

f(x) = Df(0)x +
1
2

D2f(0)(x, x) + · · · .

It follows that the linear function Df(0)x is a good first approximation to the nonlinear function f(x)

near x = 0 and it is reasonable to expect that the behavior of the nonlinear system (1) near the point x = 0

will be approximated by the behavior of its linearization at x = 0. In Section 2.7 it is shown that this is

indeed the case if the matrix Df(0) has no zero or pure imaginary eigenvalues.

Note that if x0 is an equilibrium point of (1) and φt : E → Rn is the flow of the differential equation

(1), then φt (x0) = x0 for all t ∈ R. Thus, x0 is called a fixed point of the flow φt; it is also called a zero, a

critical point, or a singular point of the vector field f : E→ Rn. We next give a rough classification of the

equilibrium points of (1) according to the signs of the real parts of the eigenvalues of the matrix Df (x0).

A finer classification is given in Section 2.10 for planar vector fields.

Definition 2. An equilibrium point x0 of (1) is called a sink if all of the eigenvalues of the matrix

Df (x0) have negative real part; it is called a source if all of the eigenvalues of Df (x0) have positive real

part; and it is called a saddle if it is a hyperbolic equilibrium point and Df (x0) has at least one eigenvalue

with a positive real part and at least one with a negative real part.

3.6 The Stable Manifold Theorem

The stable manifold theorem is one of the most important results in the local qualitative theory of

ordinary differential equations. The theorem shows that near a hyperbolic equilibrium point x0, the

nonlinear system (1) has stable and unstable manifolds S and U tangent at x0 to the stable and unstable

subspaces Es and Eu of the linearized system (2) where A = Df (x0). Furthermore, S and U are of the same

dimensions as Ea and Eu, and if φt is the flow of the nonlinear system (1), then S and U are positively

and negatively invariant under φt respectively and satisfy

lim
t→∞

φt(c) = x0 for all c ∈ S

and

lim
t→−∞

φt(c) = x0 for all c ∈ U.

We first illustrate these ideas with an example and then make them more precise by proving the

stable manifold theorem. It is assumed that the equilibrium point x0 is located at the origin throughout

the remainder of this section. If this is not the case, then the equilibrium point x0 can be translated to the

origin by the affine transformation of coordinates x→ x − x0.
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Example 1. Consider the nonlinear system

ẋ1 = −x1

ẋ2 = −x2 + x2
1

ẋ3 = x3 + x2
1.

The only equilibrium point of this system is at the origin. The matrix

A = Df(0) =


−1 0 0

0 −1 0

0 0 1

 .

Thus, the stable and unstable subspaces Es and Eu of (2) are the x1, x2 plane and the x3-axis respectively.

After solving the first differential equation, ẋ1 = −x1, the nonlinear system reduces to two uncoupled

first-order linear differential equations which are easily solved. The solution is given by

x1(t) = c1e−t

x2(t) = c2e−t + c2
1

(
e−t
− e−2t

)
x3(t) = c3et +

c2
1

3

(
et
− e−2t

)
where c = x(0). Clearly, lim

t→∞
φt(c) = 0 iff c3 + c2

1/3 = 0. Thus,

S =
{
c ∈ R3

| c3 = −c2
1/3

}
.

Similarly, lim
t→−∞

φt(c) = 0 iff c1 = c2 = 0 and therefore

U =
{
c ∈ R3

| c1 = c2 = 0
}

The stable and unstable manifolds for this system are shown in Figure 1. Note that the surface S is

tangent to Es, i.e., to the x1, x2 plane at the origin and that U = Eu.
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Before proving the stable manifold theorem, we first define the concept of a smooth surface or

differentiable manifold.

Definition 1. Let X be a metric space and let A and B be subsets of X. A homeomorphism of A onto

B is a continuous one-to-one map of A onto B, h : A→ B, such that h−1 : B→ A is continuous. The sets A

and B are called homeomorphic or topologically equivalent if there is a homeomorphism of A onto B. If

we wish to emphasize that h maps A onto B.

Definition 2. An n-dimensional differentiable manifold, M (or a manifold of class Ck ), is a connected

metric space with an open covering {Uα}, i.e., M = UαUα, such that

(1) for all α,Uα is homeomorphic to the open unit ball in Rn,B = {x ∈ Rn
||x |< 1}, i.e., for all α there

exists a homeomorphism of Uα onto B,hα : Uα → B, and

(2) if Uα ∩ Uβ , ∅ and hα : Uα → B,hβ : Uβ → B are homeomorphisms, then hα
(
Uα ∩Uβ

)
and

hβ
(
Uα ∩Uβ

)
are subsets of Rn and the map

h = hα ◦ h−1
β : hβ

(
Uα ∩Uβ

)
→ hα

(
Uα ∩Uβ

)
is differentiable (or of class Ck ) and for all x ∈ hβ

(
Uα ∩Uβ

)
, the Jacobian determinant det Dh(x) , 0. The

manifold M is said to be analytic if the maps h = hα ◦ h−1
β are analytic.

The cylindrical surface S in the above example is a two-dimensional differentiable manifold. The

projection of the x1, x2 plane onto S maps the unit disks centered at the points (m,n) in the x1x2 plane

onto homeomorphic images of the unit disk B =
{
x ∈ R2

| x2
1 + x2

2 < 1
}
. These sets Umn ⊂ S then form a

countable open cover of S in this case.

The pair ( Uα,hα ) is called a chart for the manifold M and the set of all charts is called an atlas for M.

The differentiable manifold M is called orientable if there is an atlas with det Dhα ◦ h−1
β (x) > 0 for all α, β

and x ∈ hβ
(
Uα ∩Uβ

)
.
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Theorem (The Stable Manifold Theorem). Let E be an open subset of Rn containing the origin, let

f ∈ C1(E), and let φt be the flow of the nonlinear system (1). Suppose that f(0) = 0 and that Df(0) has

k eigenvalues with negative real part and n − k eigenvalues with positive real part. Then there exists a

k-dimensional differentiable manifold S tangent to the stable subspace Es of the linear system (2) at 0

such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S.

lim
t→∞

φt (x0) = 0

and there exists an n − k dimensional differentiable manifold U tangent to the unstable subspace Eu of

(2) at 0 such that for all t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U,

lim
t→−∞

φt (x0) = 0.

Before proving this theorem, we remark that if f ∈ C1(E) and f (0) = 0, then the system (1) can be

written as

ẋ = Ax + F(x) (3)

where A = Df(0),F(x) = f(x)−Ax,F ∈ C1(E),F(0) = 0 and DF(0) = 0. This in turn implies that for all ε > 0

there is a δ > 0 such that |x| ≤ δ and |y| ≤ δ imply that

|F(x) − F(y)| ≤ ε|x − y|. (4)

Furthermore, as in Section 1.8 of Chapter 1, there is an n × n invertible matrix C such that

B = C−1AC =

 P 0

0 Q


where the eigenvalues λ1, . . . , λk of the k × k matrix P have negative real part and the eigenvalues

λk+1, . . . , λn of the (n− k)× (n− k) matrix Q have postive real part. We can choose α > 0 sufficiently small

that for j = 1, . . . , k,

Re
(
λ j

)
< −α < 0. (5)

Letting y = C−1x, the system (3) then has the form

ẏ = By + G(y) (6)

where G(y) = C−1F(Cy) ∈ C1(Ẽ) where Ẽ = C−1(E) and G satisfies the Lipschitz-type condition (4) above.
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It will be shown in the proof that there are n − k differentiable functions ψ j
(
y1, . . . , yk

)
such that the

equations

y j = ψ j
(
y1, . . . , yk

)
, j = k + 1, . . . ,n

define a k-dimensional differentiable manifold S̃ in y-space. The differentiable manifold S in x-space is

then obtained from S̃ under the linear transformation of coordinates x = Cy.

Proof. Consider the system (6). Let

U(t) =

 ePt 0

0 0

 and V(t) =

 0 0

0 eQt

 .
Then U̇ = BU, V̇ = BV and

eBt = U(t) + V(t)

It is not difficult to see that with α > 0 chosen as in (5), we can choose K > 0 sufficiently large and

σ > 0 sufficiently small that

‖U(t)‖ ≤ Ke−(α+σ)t for all t ≥ 0

and

‖V(t)‖ ≤ Keσt for all t ≤ 0.

Next consider the integral equation

u(t, a) = U(t)a +

∫ t

0
U(t − s)G(u(s, a))ds −

∫
∞

t
V(t − s)G(u(s, a))ds. (7)

If u(t, a) is a continuous solution of this integral equation, then it is a solution of the differential

equation (6). We now solve this integral equation by the method of successive approximations. Let

u(0)(t, a) = 0

and

u( j+1)(t, a) =U(t)a +

∫ t

0
U(t − s)G

(
u( j)(s, a)

)
ds

−

∫
∞

t
V(t − s)G

(
u( j)(s, a)

)
ds. (8)
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Assume that the induction hypothesis

∣∣∣u( j)(t, a) − u( j−1)(t, a)
∣∣∣ ≤ K|a|e−αt

2 j−1
(9)

holds for j = 1, 2, . . . ,m and t ≥ 0. It clearly holds for j = 1 provided t ≥ 0. Then using the Lipschitz-type

condition (4) satisfied by the function G and the above estimates on ‖U(t)‖ and ‖V(t)‖, it follows from

the induction hypothesis that for t ≥ 0

∣∣∣u(m+1)(t, a) − u(m)(t, a)
∣∣∣ ≤∫ t

0
‖U(t − s)‖ε

∣∣∣u(m)(s, a) − u(m−1)(s, a)
∣∣∣ ds

+

∫
∞

t
‖V(t − s)‖ε

∣∣∣u(m)(s, a) − u(m−1)(s, a)
∣∣∣ ds

≤ε

∫ t

0
Ke−(α+σ)(t−s) K|a|e−αs

2m−1 ds

+ ε

∫
∞

0
Keσ(t−s) K|a|e−αs

2m−1 ds

≤
εK2
|a|e−αt

σ2m−1 +
εK2
|a|e−αt

σ2m−1

<
(1

4
+

1
4

) K|a|e−αt

2m−1 =
K|a|e−αt

2m (10)

provided εK/σ < 1/4; i.e., provided we choose ε <
σ

4K
. In order that the condition (4) hold for the

function G, it suffices to choose K|a| < δ/2; i.e., we choose |a| <
δ

2K
. It then follows by induction that (9)

holds for all j = 1, 2, 3, . . . and t ≥ 0. Thus, for n > m > N and t ≥ 0,

∣∣∣u(n)(t, a) − u(m)(t, a)
∣∣∣ ≤ ∞∑

j=N

∣∣∣u( j+1)(t, a) − u( j)(t, a)
∣∣∣

≤ K|a|
∞∑

j=N

1
2 j =

K|a|
2N−1 .

This last quantity approaches zero as N → ∞ and therefore
{
u( j)(t, a)

}
is a Cauchy sequence of

continuous functions. According to the theorem in Section 2.2 ,

lim
j→∞

u( j)(t, a) = u(t, a)

uniformly for all t ≥ 0 and |a| < δ/2K. Taking the limit of both sides of (8), it follows from the

uniform convergence that the continuous function u(t, a) satisfies the integral equation (7) and hence the

differential equation (6). It follows by induction and the fact that G ∈ C1(Ẽ) that u( j)(t, a) is a differentiable

function of a for t ≥ 0 and |a| < δ/2K. Thus, it follows from the uniform convergence that u(t, a) is a
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differentiable function of a for t ≥ 0 and |a| < δ/2K. The estimate (10) implies that

|u(t, a)| ≤ 2K|a|e−αt (11)

for t ≥ 0 and |a| < δ/2K.

It is clear from the integral equation (7) that the last n− k components of the vector a do not enter the

computation and hence they may be taken as zero. Thus, the components u j(t, a) of the solution u(t, a)

satisfy the initial conditions

u j(0, a) = a j for j = 1, . . . , k

and

u j(0, a) = −

(∫
∞

0
V(−s)G (u (s, a1, . . . , ak, 0)) ds

)
j

for j = k + 1, . . . ,n.

For j = k + 1, . . . ,n we define the functions

ψ j (a1, . . . , ak) = u j (0, a1, . . . , ak, 0, . . . , 0) . (12)

Then the initial values y j = u j (0, a1, . . . , ak, 0, . . . , 0) satisfy

y j = ψ j
(
y1, . . . , yk

)
for j = k + 1, . . . ,n

according to the definition (12). These equations then define a differentiable manifold S̃ for
√

y2
1 + · · · + y2

k <

δ/2K. Furthermore, if y(t) is a solution of the differential equation (6) with y(0) ∈ S̃, i.e., with y(0) = u(0, a),

then

y(t) = u(t, a).

It follows from the estimate (11) that if y(t) is a solution of (6) with y(0) ∈ S̃, then y(t)→ 0 as t→ ∞.

It can also be shown that if y(t) is a solution of (6) with y(0) < S̃ then y(t)9 0 as t→ ∞; cf. Coddington

and Levinson. It therefore follows from Theorem 2 in Section 2.5 that if y(0) ∈ S̃, then y(t) ∈ S̃ for all

t ≥ 0. And it can be shown as in [C/L], p. 333 that

∂ψ j

∂yi
(0) = 0

for i = 1, . . . , k and j = k + 1, . . . ,n; i.e., the differentiable manifold S̃ is tangent to the stable subspace

Es =
{
y ∈ Rn

| y1 = · · · yk = 0
}

of the linear system ẏ = By at 0 .

The existence of the unstable manifold Ũ of (6) is established in exactly the same way by considering

the system (6) with t→ −t, i.e.,

ẏ = −By −G(y).
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The stable manifold for this system will then be the unstable manifold Ũ for (6). Note that it is also

necessary to replace the vector y by the vector
(
yk+1, . . . , yn, y1, . . . , yk

)
in order to determine the n − k

dimensional manifold U by the above process. This completes the proof of the Stable Manifold Theorem.

Remark 1. The first rigorous results concerning invariant manifolds were due to Hadamard in 1901,

Liapunov in 1907 and Perron in 1928. They proved the existence of stable and unstable manifolds of

systems of differential equations and of maps. The proof presented in this section is due to Liapunov

and Perron. Several recent results generalizing the results of the Stable Manifold Theorem have been

given by Hale, Hirsch, Pugh, Shub and Smale to mention a few. We note that if the function f ∈ Cr(E)

and r ≥ 1, then the stable and unstable differentiable manifolds S and U of (1) are of class Cr. And if f is

analytic in E then S and U are analytic manifolds.

Definition 3. Let φt be the flow of the nonlinear system (1). The global stable and unstable manifolds

of (1) at 0 are defined by

Ws(0) =
⋃
t≤0

φt(S)

and

Wu(0) =
⋃
t≥0

φt(U)

respectively; Ws(0) and Wu(0) are also referred to as the global stable and unstable manifolds of the

origin respectively. It can be shown that the global stable and unstable manifolds Ws(0) and Wu(0) are

unique and
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that they are invariant with respect to the flow φt; furthermore, for all x ∈Ws(0), lim
t→∞

φt(x) = 0 and for all

x ∈Wu(0), lim
t→−∞

φt(x) = 0.

As in the proof of the Stable Manifold Theorem, it can be shown that in a small neighborhood, N,

of a hyperbolic critical point at the origin, the local stable and unstable manifolds, S and U, of (1) at the

origin are given by

S =
{
x ∈ N | φt(x)→ 0 as t→∞ and φt(x) ∈ N for t ≥ 0

}
and

U =
{
x ∈ N | φt(x)→ 0 as t→ −∞ and φt(x) ∈ N for t ≤ 0

}
Figure 3 shows some numerically computed solution curves for the system in Example 2. The global

stable and unstable manifolds for this example are shown in Figure 4. Note that Ws(0) and Wu(0) intersect

in a "homoclinic loop" at the origin. Ws(0) and Wu(0) are more properly called "branched manifolds" in

this example.
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It follows from equation (11) in the proof of the stable manifold theorem that if x(t) is a solution of the

differential equation (6) with x(0) ∈ S, i.e., if x(t) = Cy(t) with y(0) = u(0, a) ∈ S̃, then for any ε > 0 there

exists a δ > 0 such that if |x(0)| < δ then

|x(t)| ≤ εe−αt

for all t ≥ 0. Just as in the proof of the stable manifold theorem, α is any positive number that satisfies

Re
(
λ j

)
< −α for j = 1, . . . , k where λ j, j = 1, . . . , k are the eigenvalues of Df(0) with negative real part. This

result shows that solutions starting in S, sufficiently near the origin, approach the origin exponentially

fast as t→∞.

Corollary. Under the hypotheses of the Stable Manifold Theorem, if S and U are the stable and

unstable manifolds of (1) at the origin and if Re
(
λ j

)
< −α < 0 < β < Re (λm) for j = 1, . . . , k and

m = k + 1, . . . ,n, then given ε > 0 there exists a δ > 0 such that if x0 ∈ Nδ(0) ∩ S then

∣∣∣φt (x0)
∣∣∣ ≤ εe−αt

for all t ≥ 0 and if x0 ∈ Nδ(0) ∩U then ∣∣∣φt (x0)
∣∣∣ ≤ εeβt

for all t ≤ 0. We add one final result to this section which establishes the existence of an invariant center

manifold Wc(0) tangent to Ec at 0. The next theorem follows from the local center manifold theorem,

Theorem 2 in Section 2.12, and the stable manifold theorem in this section.

Theorem (The Center Manifold Theorem). Let f ∈ Cr(E) where E is an open subset of Rn containing

the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part, j

eigenvalues with positive real part, and m = n − k − j eigenvalues with zero real part. Then there exists

an m-dimensional center manifold Wc(0) of class Cr tangent to the center subspace Ec of (2) at 0 , there

exists a k-dimensional stable manifold Ws(0) of class Cr tangent to the stable subspace Es of (2) at 0 and
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there exists a j-dimensional unstable manifold Wu(0) of class Cr tangent to the unstable subspace Eu of

(2) at 0 ; furthermore, Wc(0), Ws(0) and Wu(0) are invariant under the flow φt of (1).

3.7 The Hartman-Grobman Theorem

The Hartman-Grobman Theorem is another very important result in the local qualitative theory of ordi-

nary differential equations. The theorem shows that near a hyperbolic equilibrium point x0, the nonlinear

system (1) has the same qualitative structure as the linear system (2), with A = Df (x0). Throughout this

section we shall assume that the equilibrium point x0 has been translated to the origin.

Definition 1. Two autonomous systems of differential equations such as (1) and (2) are said to be

topologically equivalent in a neighborhood of the origin or to have the same qualitative structure near

the origin if there is a homeomorphism H mapping an open set U containing the origin onto an open

set V containing the origin which maps trajectories of (1) in U onto trajectories of (2) in V and preserves

their orientation by time in the sense that if a trajectory is directed from x1 to x2 in U, then its image is

directed from H (x1) to H (x2) in V. If the homeomorphism H preserves the parameterization by time,

then the systems (1) and (2) are said to be topologically conjugate in a neighborhood of the origin.

Before stating the Hartman-Grobman Theorem, we consider a simple example of two topologically

conjugate linear systems.

Theorem (The Hartman-Grobman Theorem). Let E be an open subset of Rn containing the origin,

let f ∈ C1(E), and let φt be the flow of the nonlinear system (1). Suppose that f(0) = 0 and that the matrix

A = Df(0) has no eigenvalue with zero real part. Then there exists a homeomorphism H of an open set

U containing the origin onto an open set V containing the origin such that for each x0 ∈ U, there is an

open interval I0 ⊂ R containing zero such that for all x0 ∈ U and t ∈ I0

H ◦ φt (x0) = eAtH (x0) ;

i.e., H maps trajectories of (1) near the origin onto trajectories of (2) near the origin and preserves the

parameterization by time.

Outline of the Proof. Consider the nonlinear system (1) with f ∈ C1(E), f(0) = 0 and A = Df(0).

1. Suppose that the matrix A is written in the form

A =

 P 0

0 Q


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where the eigenvalues of P have negative real part and the eigenvalues of Q have positive real part.

2. Let φt be the flow of the nonlinear system (1) and write the solution

x (t, x0) = φt (x0) =

 y
(
t,y0, z0

)
z
(
t,y0, z0

)


where

x0 =

 y0

z0

 ∈ Rn,

y0 ∈ Es, the stable subspace of A and z0 ∈ Eu, the unstable subspace of A.

3. Define the functions

Ỹ
(
y0, z0

)
= y

(
1,y0, z0

)
− ePy0

and

Z̃
(
y0, z0

)
= z

(
1,y0, z0

)
− eQz0 .

Then Ỹ(0) = Z̃(0) = DỸ(0) = DZ̃(0) = 0. And since f ∈ C1(E), Ỹ
(
y0, z0

)
and Z̃

(
y0, z0

)
are continuously

differentiable. Thus, ∥∥∥DỸ
(
y0, z0

)∥∥∥ ≤ a

and ∥∥∥DZ̃
(
y0, z0

)∥∥∥ ≤ a

on the compact set
∣∣∣y0

∣∣∣2 + |z0|
2
≤ s2

0. The constant a can be taken as small as we like by choosing s0

sufficiently small. We let Y
(
y0, z0

)
and Z

(
y0, z0

)
be smooth functions which are equal to Ỹ

(
y0, z0

)
and

Z̃
(
y0, z0

)
for

∣∣∣y0

∣∣∣2 + |z0|
2
≤ (s0/2)2 and zero for

∣∣∣y0

∣∣∣2 + |z0|
2
≥ s2

0. Then by the mean value theorem

∣∣∣Y (
y0, z0

)∣∣∣ ≤ a
√∣∣∣y0

∣∣∣2 + |z0|
2
≤ a

(∣∣∣y0

∣∣∣ + |z0|
)

and ∣∣∣Z (
y0, z0

)∣∣∣ ≤ a
√∣∣∣y0

∣∣∣2 + |z0|
2
≤ a

(∣∣∣y0

∣∣∣ + |z0|
)

for all
(
y0, z0

)
∈ Rn. We next let B = eP and C = eQ. Then assuming that we have carried out the

normalization in Problem 7 in Section 1.8 of Chapter 1, cf. Hartman [H], p. 233, we have

b = ‖B‖ < 1 and c =
∥∥∥C−1

∥∥∥ < 1.

4. For

x =

 y

z

 ∈ Rn
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define the transformations

L(y, z) =

 By

Cz


and

T(y, z) =

 By + Y(y, z)

Cz + Z(y, z)


i.e., L(x) = eAx and locally T(x) = φ1(x).

Lemma. There exists a homeomorphism H of an open set U containing the origin onto an open set

V containing the origin such that

H ◦ T = L ◦H.

We establish this lemma using the method of successive approximations. For x ∈ Rn, let

H(x) =

 Φ(y, z)

Ψ(y, z)


Then H ◦ T = L ◦H is equivalent to the pair of equations

BΦ(y, z) = Φ(By + Y(y, z),Cz + Z(y, z))

CΨ(y, z) = Ψ(By + Y(y, z),Cz + Z(y, z)). (3)

First of all, define the successive approximations for the second equation by

Ψ0(y, z) = z

Ψk+1(y, z) = C−1Ψk(By + Y(y, z),Cz + Z(y, z)) (4)

It then follows by an easy induction argument that for k = 0, 1, 2, . . ., the Ψk(y, z) are continuous and

satisfy Ψk(y, z) = z for |y| + |z| ≥ 2s0. We next prove by induction that for j = 1, 2, . . .

∣∣∣Ψ j(y, z) −Ψ j−1(y, z)
∣∣∣ ≤Mr j(|y| + |z|)δ

where r = c[2 max(a, b, c)]δ with δ ∈ (0, 1) chosen sufficiently small so that r < 1 (which is possible since

c < 1 ) and M = ac (2s0)1−δ /r. First of all for j = 1

∣∣∣Ψ1(y, z) −Ψ0(y, z)
∣∣∣ = C−1Ψ0(By + Y(y, z),Cz + Z(y, z)) − z |

=
∣∣∣C−1(Cz + Z(y, z)) − z

∣∣∣
=

∣∣∣C−1Z(y, z)
∣∣∣ ≤ ∥∥∥C−1

∥∥∥ |Z(y, z)|

≤ ca(|y| + |z|) ≤Mr(|y| + |z|)δ
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since Z(y, z) = 0 for |y|+ |z| ≥ 2s0. And then assuming that the induction hypothesis holds for j = 1, . . . , k

we have ∣∣∣Ψk+1(y, z) −Ψk(y, z)
∣∣∣ = | C−1Ψk(By + Y(y, z),Cz + Z(y, z))

− C−1Ψk−1(By + Y(y, z),Cz + Z(y, z)) |

≤

∥∥∥C−1
∥∥∥ | Ψk(′′) −Ψk−1(′′) |

≤cMrk [
|By + Y(y, z)| + |Cz + Z(y, z)

]δ
≤ cMrk

|b|y| + 2a(|y| + |z|) + c|z |
]δ

≤cMrk[2 max(a, b, c)]δ(|y| + |z|)δ

=Mrk+1(|y| + |z|)δ

Thus, just as in the proof of the fundamental theorem in Section 2.2 and the stable manifold theorem

in Section 2.7, Ψk(y, z) is a Cauchy sequence of continuous functions which converges uniformly as

k → ∞ to a continuous function Ψ(y, z). Also, Ψ(y, z) = z for |y| + |z| ≥ 2s0. Taking limits in (4) shows

that Ψ(y, z) is a solution of the second equation in (3).

The first equation in (3) can be written as

B−1Φ(y, z) = Φ
(
B−1y + Y1(y, z),C−1z + Z1(y, z)

)
where the functions Y1 and Z1 are defined by the inverse of T (which exists if the constant a is sufficiently

small, i.e., if s0 is sufficiently small) as follows:

T−1(y, z) =

 B−1y + Y1(y, z)

C−1z + Z1(y, z)

 .

Then equation (6) can be solved for Φ(y, z) by the method of successive approximations exactly as

above with Φ0(y, z) = y since b = ‖B‖ < 1. We therefore obtain the continuous map

H(y, z) =

 Φ(y, z)

Ψ(y, z)


And it follows as on pp. 248-249 in Hartman [H] that H is a homeomorphism of Rn onto Rn.

5. We now let H0 be the homeomorphism defined above and let Lt and Tt be the one-parameter

families of transformations defined by

Lt (x0) = eAtx0 and Tt (x0) = φt (x0) .
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Define

H =

∫ 1

0
L−sH0Tsds.

It then follows using the above lemma that there exists a neighborhood of the origin for which

LtH =

∫ 1

0
Lt−sH0Ts−tdsTt

=

∫ 1−t

−t
L−sH0TsdsTt

=

[∫ 0

−t
L−sH0Tsds +

∫ 1−t

0
L−sH0Tsds

]
Tt

=

∫ 1

0
L−sH0TsdsTt = HTt

since by the above lemma H0 = L−1H0T which implies that

∫ 0

−t
L−sH0Tsds =

∫ 0

−t
L−s−1H0Ts+1ds

=

∫ 1

1−t
L−sH0Tsds

Thus, H ◦ Tt = LtH or equivalently

H ◦ φt (x0) = eAtH (x0)

and it can be shown as on pp. 250-251 of Hartman [H] that H is a homeomorphism on Rn. This completes

the outline of the proof of the HartmanGrobman Theorem.

Theorem (Hartman). Let E be an open subset of Rn containing the point x0, let f ∈ C2(E), and let φt

be the flow of the nonlinear system (1). Suppose that f (x0) = 0 and that all of the eigenvalues λ1, . . . , λn

of the matrix A = Df (x0) have negative (or positive) real part. Then there exists a C1-diffeomorphism H

of a neighborhood U of x0 onto an open set V containing the origin such that for each x ∈ U there is an

open interval I(x) ⊂ R containing zero such that for all x ∈ U and t ∈ I(x)

H ◦ φt(x) = eAtH(x).

3.8 Stability and Liapunov Functions

In this section we discuss the stability of the equilibrium points of the nonlinear system (1). The stability

of any hyperbolic equilibrium point x0 of (1) is determined by the signs of the real parts of the eigenvalues

λ j of the matrix Df (x0). A hyperbolic equilibrium point x0 is asymptotically stable iff Re
(
λ j

)
< 0 for
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j = 1, . . . ,n; i.e., iff x0 is a sink. And a hyperbolic equilibrium point x0 is unstable iff it is either a source

or a saddle. The stability of nonhyperbolic equilibrium points is typically more difficult to determine.

A method, due to Liapunov, that is very useful for deciding the stability of nonhyperbolic equilibrium

points is presented in this section.

Definition 1. Let φt denote the flow of the differential equation (1) defined for all t ∈ R. An

equilibrium point x0 of (1) is stable if for all ε > 0 there exists a δ > 0 such that for all x ∈ N6 (x0) and t ≥ 0

we have

φt(x) ∈ Nc (x0) .

The equilibrium point x0 is unstable if it is not stable. And x0 is asymptotically stable if it is stable

and if there exists a δ > 0 such that for all x ∈ N6 (x0) we have

lim
t→∞

φt(x) = x0.

Note that the above limit being satisfied for all x in some neighborhood of x0 does not imply that x0 is

stable.

It can be seen from the phase portraits in Section 1.5 of Chapter 1 that a stable node or focus of a

linear system in R2 is an asymptotically stable equilibrium point; an unstable node or focus or a saddle

of a linear system in R2 is an unstable equilibrium point; and a center of a linear system in R2 is a stable

equilibrium point which is not asymptotically stable.

It follows from the Stable Manifold Theorem and the Hartman-Grobman Theorem that any sink of (1)

is asymptotically stable and any source or saddle of (1) is unstable. Hence, any hyperbolic equilibrium

point of (1) is either asymptotically stable or unstable. The corollary in Section 2.7 provides even more

information concerning the local behavior of solutions near a sink:

Theorem 1. If x0 is a sink of the nonlinear system (1) and Re
(
λ j

)
< −α < 0 for all of the eigenvalues

λ j of the matrix Df (x0), then given ε > 0 there exists a δ > 0 such that for all x ∈ Nδ (x0), the flow φt(x) of

(1) satisfies ∣∣∣φt(x) − x0

∣∣∣ ≤ εe−αt

for all t ≥ 0.

Since hyperbolic equilibrium points are either asymptotically stable or unstable, the only time that

an equilibrium point x0 of (1) can be stable but not asymptotically stable is when Df (x0) has a zero

eigenvalue or a pair of complex-conjugate, pure-imaginary eigenvalues λ = ±ib. It follows from the next

theorem, proved in [H/S], that all other eigenvalues λ, of Df (x0) must satisfy Re
(
λ j

)
≤ 0 if x0 is stable.

Theorem 2. If x0 is a stable equilibrium point of (1), no eigenvalue of Df (x0) has positive real part.
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We see that stable equilibrium points which are not asymptotically stable can only occur at nonhy-

perbolic equilibrium points. But the question as to whether a nonhyperbolic equilibrium point is stable,

asymptotically stable or unstable is a delicate question.

The following method, due to Liapunov (in his 1892 doctoral thesis), is very useful in answering this

question.

Definition 2. If f ∈ C1(E),V ∈ C1(E) and φt is the flow of the differential equation (1), then for x ∈ E

the derivative of the function V(x) along the solution φt(x)

V̇(x) =
d
dt

V
(
φt(x)

)∣∣∣∣∣
t=0

= DV(x)f(x).

The last equality follows from the chain rule. If V̇(x) is negative in E then V(x) decreases along the

solution φt (x0) through x0 ∈ E at t = 0. Furthermore, in R2, if V̇(x) ≤ 0 with equality only at x = 0, then

for small positive C, the family of curves V(x) = C constitutes a family of closed curves enclosing the

origin and the trajectories of (1) cross these curves from their exterior to their interior with increasing

t; i.e., the origin of (1) is asymptotically stable. A function V : Rn
→ R satisfying the hypotheses of the

next theorem is called a Liapunov function.

Theorem 3. Let E be an open subset of Rn containing x0. Suppose that f ∈ C1(E) and that f (x0) = 0.

Suppose further that there exists a real valued function V ∈ C1(E) satisfying V (x0) = 0 and V(x) > 0 if

x , x0.

Then (a) if V̇(x) ≤ 0 for all x ∈ E, x0 is stable;

(b) if V̇(x) < 0 for all x ∈ E ∼ {x0} , x0 is asymptotically stable;

(c) if V̇(x) > 0 for all x ∈ E ∼ {x0} , x0 is unstable.

Proof. Without loss of generality, we shall assume that the equilibrium point x0 = 0.

(a) Choose ε > 0 sufficiently small that Nε(0) ⊂ E and let mε be the minimum of the continuous

function V(x) on the compact set

Sε = {x ∈ Rn
| |x |= ε} .

Then since V(x) > 0 for x , 0, it follows that mε > 0. Since V(x) is continuous and V(0) = 0, it follows

that there exists a δ > 0 such that |x| < δ implies that V(x) < mc. Since V̇(x) ≤ 0 for x ∈ E, it follows that

V(x) is decreasing along trajectories of (1). Thus, if φt is the flow of the differential equation (1), it follows

that for all x0 ∈ Nδ(0) and t ≥ 0 we have

V
(
φt (x0)

)
≤ V (x0) < mε.
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Now suppose that for |x0| < δ there is a t1 > 0 such that
∣∣∣φt1 (x0)

∣∣∣ = ε; i.e., such that φt1 (x0) ∈ Sε. Then

since mε is the minimum of V(x) on Sε, this would imply that

V
(
φt1 (x0)

)
≥ mε

which contradicts the above inequality. Thus for |x0| < δ and t ≥ 0 it follows that
∣∣∣φt (x0)

∣∣∣ < ε; i.e., 0 is a

stable equilibrium point.

(b) Suppose that V̇(x) < 0 for all x ∈ E. Then V(x) is strictly decreasing along trajectories of (1). Let

φt be the flow of (1) and let x0 ∈ Nδ(0), the neighborhood defined in part (a). Then, by part (a), if |x0| < δ,

φt (x0) ⊂ Nε(0) for all t ≥ 0. Let {tk} be any sequence with tk → ∞. Then since Nε(0) is compact, there is

a subsequence of
{
φtk (x0)

}
that converges to a point in Nε(0). But for any subsequence {tn} of {tk} such

that
{
φtn (x0)

}
converges, we show below that the limit is zero. It then follows that φtk (x0) → 0 for any

sequence tk → ∞ and therefore that φt (x0)→ 0 as t→ ∞; i.e., that 0 is asymptotically stable. It remains

to show that if φtn (x0) → y0, then y0 = 0. Since V(x) is strictly decreasing along trajectories of (1) and

since V
(
φtn (x0)

)
→ V

(
y0

)
by the continuity of V, it follows that

V
(
φt (x0)

)
> V

(
y0

)
for all t > 0. But if y0 , 0, then for s > 0 we have V

(
φs

(
y0

))
< V

(
y0

)
and, by continuity, it follows

that for all y sufficiently close to y0 we have V
(
φs(y)

)
< V

(
y0

)
for s > 0. But then for y = φtn (x0) and n

sufficiently large, we have

V
(
φs+tn (x0)

)
< V

(
y0

)
which contradicts the above inequality. Therefore y0 = 0 and it follows that 0 is asymptotically stable.

(c) Let M be the maximum of the continuous function V(x) on the compact set Nε(0). Since V̇(x) >

0,V(x) is strictly increasing along trajectories of (1). Thus, if φt is the flow of (1), then for any δ > 0 and

x0 ∈ Nδ(0) ∼ {0}we have

V
(
φt (x0)

)
> V (x0) > 0

for all t > 0. And since V̇(x) is positive definite, this last statement implies that

inf
i≥0

V̇
(
φt (x0)

)
= m > 0

Thus,

V
(
φt (x0)

)
− V (x0) ≥ mt
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for all t ≥ 0. Therefore,

V
(
φt (x0)

)
> mt > M

for t sufficiently large; i.e., φt (x0) lies outside the closed set Nε(0). Hence, 0 is unstable.

Remark. If V̇(x) = 0 for all x ∈ E then the trajectories of (1) lie on the surfaces in Rn (or curves in R2 )

defined by

V(x) = c.

3.9 Saddles, Nodes, Foci and Centers

In Section 1.5 of Chapter 1, a linear system (1), where x ∈ R2 was said to have a saddle, node, focus or

center at the origin if its phase portrait was linearly equivalent to one of the phase portraits in Figures

1-4 in Section 1.5 of Chapter 1 respectively; i.e., if there exists a nonsingular linear transformation

which reduces the matrix A to one of the canonical matrices B in Cases I-IV of Section 1.5 in Chapter 1

respectively. For example, the linear system (1) of the example in Section 2.8 of this chapter has a saddle

at the origin.

In Section 2.6, a nonlinear system (2) was said to have a saddle, a sink or a source at a hyperbolic

equilibrium point x0 if the linear part of f at x0 had eigenvalues with both positive and negative real

parts, only had eigenvalues with negative real parts, or only had eigenvalues with positive real parts,

respectively.

In this section, we define the concept of a topological saddle for the nonlinear system (2) with x ∈ R2

and show that if x0 is a hyperbolic equilibrium point of (2) then it is a topological saddle if and only if it

is a saddle of (2); i.e., a hyperbolic equilibrium point x0 is a topological saddle for (2) if and only if the

origin is a saddle for (1) with A = Df (x0). We discuss topological saddles for nonhyperbolic equilibrium

points of (2) with x ∈ R2 in the next section. We also refine the classification of sinks of the nonlinear

system (2) into stable nodes and foci and show that, under slightly stronger hypotheses on the function

f, i.e., stronger than f ∈ C1(E), a hyperbolic critical point x0 is a stable node or focus for the nonlinear

system (2) if and only if it is respectively a stable node or focus for the linear system (1) with A = Df (x0

). Similarly, a source of (2) is either an unstable node or focus of (2) as defined below. Finally, we define

centers and center-foci for the nonlinear system (2) and show that, under the addition of nonlinear terms,

a center of the linear system (1) may become either a center, a center-focus, or a stable or unstable focus

of (2).

Before defining these various types of equilibrium points for planar systems (2), it is convenient to

introduce polar coordinates ( r, θ ) and to rewrite the system (2) in polar coordinates. In this section we

let x = (x, y)T, f1(x) = P(x, y) and f2(x) = Q(x, y). The nonlinear system (2) can then be written as
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ẋ = P(x, y)

ẏ = Q(x, y). (3)

If we let r2 = x2 + y2 and θ = tan−1(y/x), then we have

rṙ = xẋ + yẏ

and

r2θ̇ = xẏ − yẋ.

It follows that for r > 0, the nonlinear system (3) can be written in terms of polar coordinates as

ṙ = P(r cosθ, r sinθ) cosθ + Q(r cosθ, r sinθ) sinθ

rθ̇ = Q(r cosθ, r sinθ) cosθ − P(r cosθ, r sinθ) sinθ (4)

or as

dr
dθ

= F(r, θ) ≡
r[P(r cosθ, r sinθ) cosθ + Q(r cosθ, r sinθ) sinθ]

Q(r cosθ, r sinθ) cosθ − P(r cosθ, r sinθ) sinθ
. (5)

Writing the system of differential equations (3) in polar coordinates will often reveal the nature of the

equilibrium point or critical point at the origin.

Definition 1. The origin is called a center for the nonlinear system (2) if there exists a δ > 0 such that

every solution curve of (2) in the deleted neighborhood Nδ(0) ∼ {0} is a closed curve with 0 in its interior.

Definition 2. The origin is called a center-focus for (2) if there exists a sequence of closed solution

curves Γn with Γn+1 in the interior of Γn such that Γn → 0 as n→∞ and such that every trajectory between

Γn and Γn+1 spirals toward Γn or Γn+1 as t→ ±∞.

Definition 3. The origin is called a stable focus for (2) if there exists a δ > 0 such that for 0 < r0 < δ

and θ0 ∈ R, r (t, r0, θ0)→ 0 and |θ (t, r0, θ0)| → ∞ as t→∞. It is called an unstable focus if r (t, r0, θ0)→ 0

and |θ (t, r0, θ0)| → ∞ as t→ −∞. Any trajectory of (2) which satisfies r(t)→ 0 and |θ(t)| → ∞ as t→ ±∞

is said to spiral toward the origin as t→ ±∞.

Definition 4. The origin is called a stable node for (2) if there exists a δ > 0 such that for 0 < r0 < δ and

θ0 ∈ R, r (t, r0, θ0)→ 0 as t→∞ and lim
t→∞

θ (t, r0, θ0) exists; i.e., each trajectory in a deleted neighborhood
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of the origin approaches the origin along a well-defined tangent line as t → ∞. The origin is called an

unstable node if r (t, r0, θ0) → 0 as t → −∞ and lim
t→−∞

θ (t, r0, θ0) exists for all r0 ∈ (0, δ) and θ0 ∈ R. The

origin is called a proper node for (2) if it is a node and if every ray through the origin is tangent to some

trajectory of (2).

Definition 5. The origin is a (topological) saddle for (2) if there exist two trajectories Γ1 and Γ2 which

approach 0 as t → ∞ and two trajectories Γ3 and Γ4 which approach 0 as t → −∞ and if there exists a

δ > 0 such that all other trajectories which start in the deleted neighborhood of the origin N6(0) ∼ {0}

leave N6(0) as t→ ±∞. The special trajectories Γ1, . . . ,Γ4 are called separatrices.

For a (topological) saddle, the stable manifold at the origin S = Γ1∪ Γ2∪{0} and the unstable manifold

at the origin U = Γ3 ∪ Γ4 ∪ {0}. If the trajectory Γi approaches the origin along a ray making an angle

θi with the x-axis where θi ∈ (−π, π] for i = 1, . . . , 4, then θ2 = θ1 ± π and θ4 = θ3 ± π. This follows by

considering the possible directions in which a trajectory of (2), written in polar form (4), can approach

the origin; cf. equation (6) below. The following theorems, proved in [A-I], are useful in this regard. The

first theorem is due to Bendixson [B].

Theorem 1 (Bendixson). Let E be an open subset of R2 containing the origin and let f ∈ C1(E). If the

origin is an isolated critical point of (2), then either every neighborhood of the origin contains a closed

solution curve with 0 in its interior or there exists a trajectory approaching 0 as t→ ±∞.

Theorem 2. Suppose that P(x, y) and Q(x, y) in (3) are analytic functions of x and y in some open

subset E of R2 containing the origin and suppose that the Taylor expansions of P and Q about (0, 0) begin

with mth-degree terms Pm(x, y) and Qm(x, y) with m ≥ 1. Then any trajectory of (3) which approaches

the origin as t → ∞ either spirals toward the origin as t →∞ or it tends toward the origin in a definite

direction θ = θ0 as t→∞. If xQm(x, y)− yPm(x, y) is not identically zero, then all directions of approach,

θ0, satisfy the equation

cosθ0Qm (cosθ0, sinθ0) − sinθ0Pm (cosθ0, sinθ0) = 0.

Furthermore, if one trajectory of (3) spirals toward the origin as t→∞ then all trajectories of (3) in a

deleted neighborhood of the origin spiral toward 0 as t→∞.

It follows from this theorem that if P and Q begin with first-degree terms, i.e., if

P1(x, y) = ax + by

and

Q1(x, y) = cx + dy
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with a, b, c and d not all zero, then the only possible directions in which trajectories can approach the

origin are given by directions θ which satisfy

b sin2 θ + (a − d) sinθ cosθ − cos2 θ = 0. (6)

For cosθ , 0 in this equation, i.e., if b , 0, this equation is equivalent to

b tan2 θ + (a − d) tanθ − c = 0. (6’)

This quadratic has at most two solutions θ ∈ (−π/2, π/2] and if θ = θ1 is a solution then θ = θ1 ± π

are also solutions. Finding the solutions of (6′) is equivalent to finding the directions determined by the

eigenvectors of the matrix

A =

 a b

c d

 .
The next theorem follows immediately from the Stable Manifold Theorem and the Hartman-Grobman

Theorem. It establishes that if the origin is a hyperbolic equilibrium point of the nonlinear system (2),

then it is a (topological) saddle for (2) if and only if it is a saddle for its linearization at the origin.

Furthermore, the directions θ j along which the separatrices Γ j approach the origin are solutions of (6).

Theorem 3. Suppose that E is an open subset of R2 containing the origin and that f ∈ C1(E). If the

origin is a hyperbolic equilibrium point of the nonlinear system (2), then the origin is a (topological)

saddle for (2) if and only if the origin is a saddle for the linear system (1) with A = Df(0).

Theorem 4. Let E be an open subset of R2 containing the origin and let f ∈ C2(E). Suppose that the

origin is a hyperbolic critical point of (2). Then the origin is a stable (or unstable) node for the nonlinear

system (2) if and only if it is a stable (or unstble) node for the linear system (1) with A = Df(0 ). And the

origin is a stable (or unstable) focus for the nonlinear system (2) if and only if it is a stable (or unstable)

focus for the linear system (1) with A = Df(0).

Remark. Under the hypotheses of Theorem 4, it follows that the origin is a proper node for the

nonlinear system (2) if and only if it is a proper node for the linear system (1) with A = Df(0). And under

the weaker hypothesis that f ∈ C1(E), it still follows that if the origin is a focus for the linear system (1)

with A = Df(0), then it is a focus for the nonlinear system (2).

Theorem 5. Let E be an open subset of R2 containing the origin and let f ∈ C1(E) with f(0) = 0.

Suppose that the origin is a center for the linear system (1) with A = Df(0). Then the origin is either a

center, a center-focus or a focus for the nonlinear system (2).
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Proof. We may assume that the matrix A = Df(0) has been transformed to its canonical form

A =

 0 −b

b 0


with b , 0. Assume that b > 0; otherwise we can apply the linear transformation t → −t. The

nonlinear system (3) then has the form

ẋ = −by + p(x, y)

ẏ = bx + q(x, y)

Since f ∈ C1(E), it follows that |p(x, y)/r| → 0 and |q(x, y)/r| → 0 as r → 0; i.e., p = o(r) and q = o(r) as

r → 0. Thus, in polar coordinates we have ṙ = o(r) and θ̇ = b + o(1) as r → 0. Therefore, there exists a

δ > 0 such that θ̇ ≥ b/2 > 0 for 0 < r ≤ δ. Thus for 0 < r0 ≤ δ and θ0 ∈ R, θ (t, r0, θ0) ≥ bt/2 + θ0 → ∞ as

t→∞; and θ (t, r0, θ0) is a monotone increasing function of t. Let t = h(θ) be the inverse of this monotone

function. Define r̃(θ) = r (h(θ), r0, θ0) for 0 < r0 ≤ δ and θ0 ∈ R. Then r̃(θ) satisfies the differential

equation (5) which has the form

dr̃
dθ

= F̃(r̃, θ) =
cosθp(r̃ cosθ, r̃ sinθ) + sinθq(r̃ cosθ, r̃ sinθ)

b + (cosθ/r̃)q(r̃ cosθ, r̃ sinθ) − (sinθ/r̃)p(r̃ cosθ, r̃ sinθ)

Suppose that the origin is not a center or a center-focus for the nonlinear system (3). Then for δ > 0

sufficiently small, there are no closed trajectories of (3) in the deleted neighborhood Nδ(0) ∼ {0}. Thus for

0 < r0 < δ and θ0 ∈ R, either r̃ (θ0 + 2π) < r̃ (θ0) or r̃ (θ0 + 2π) > r̃ (θ0). Assume that the first case holds.

The second case is treated in a similar manner. If r̃ (θ0 + 2π) < r̃ (θ0) then r̃ (θ0 + 2kπ) < r̃ (θ0 + 2(k − 1)π)

for k = 1, 2, 3 . . . Otherwise we would have two trajectories of (3) through the same point which is

impossible. The sequence r̃ (θ0 + 2kπ) is monotone decreasing and bounded below by zero; therefore,

the following limit exists and is nonnegative:

r̃1 = lim
k→∞

r̃ (θ0 + 2kπ)

If r̃1 = 0 then r̃(θ) → 0 as θ → ∞; i.e., r (t, r0, θ0) → 0 and θ (t, r0, θ0) → ∞ as t → ∞ and the origin

is a stable focus of (3). If r̃1 > 0 then since |F̃(r, θ)| ≤ M for 0 ≤ r ≤ δ and 0 ≤ θ ≤ 2π, the sequence

r̃ (θ0 + θ + 2kπ) is equicontinuous on [0, 2π]. Therefore, by Ascoli’s Lemma, cf. Theorem 7.25 in Rudin

[R], there exists a uniformly convergent subsequence of r̃ (θ0 + θ+ 2kπ) converging to a solution r̃1(θ)

which satisfies r̃1(θ) = r̃1(θ + 2kπ); i.e., r̃1(θ) is a non-zero periodic solution of (5). This contradicts the

fact that

there are no closed trajectories of (3) in Nδ(0) ∼ {0} when the origin is not a center or a center focus of

(3). Thus if the origin is not a center or a center focus of (3), r̃1 = 0 and the origin is a focus of (3). This

completes the proof of the theorem.
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A center-focus cannot occur in an analytic system. This is a consequence of Dulac’s Theorem discussed

in Section 3.3 of Chapter 3. We therefore have the following corollary of Theorem 5 for analytic systems.

Corollary. Let E be an open subset of R2 containing the origin and let f be analytic in E with f(0) = 0.

Suppose that the origin is a center for the linear system (1) with A = Df(0). Then the origin is either a

center or a focus for the nonlinear system (2).

As we noted in the previous section, Liapunov’s method is one tool that can be used to distinguish a

center from a focus for a nonlinear system. Another approach is to write the system in polar coordinates

as in Examples 1-3 above. Yet another approach is to look for symmetries in the differential equations.

The easiest symmetries to see are symmetries with respect to the x and y axes.

Definition 6. The system (3) is said to be symmetric with respect to the x-axis if it is invariant under

the transformation (t, y) → (−t,−y); it is said to be symmetric with respect to the y-axis if it is invariant

under the transformation (t, x)→ (−t,−x).

Note that the system in Example 1 is symmetric with respect to the x-axis, but not with respect to the

y-axis.

Theorem 6. Let E be an open subset of R2 containing the origin and let f ∈ C1(E) with f(0) = 0. If the

nonlinear system (2) is symmetric with respect to the x-axis or the y-axis, and if the origin is a center for

the linear system (1) with A = Df(0), then the origin is a center for the nonlinear system (2).

The idea of the proof of this theorem is that by Theorem 5, any trajectory of (3) in Nδ(0) which crosses

the positive x-axis will also cross the negative x-axis. If the system (3) is symmetric with respect to the

x-axis, then the trajectories of (3) in Nδ(0) will be symmetric with respect to the x-axis and hence all

trajectories of (3) in Nδ(0) will be closed; i.e., the origin will be a center for (3).

3.10 Nonhyperbolic Critical Points in R2

In this section we present some results on nonhyperbolic critical points of planar analytic systems. This

work originated with Poincaré [P] and was extended by Bendixson [B] and more recently by Andronov

et al. [A − I]. We assume that the origin is an isolated critical point of the planar system

ẋ = P(x, y)

ẏ = Q(x, y) (1)

where P and Q are analytic in some neighborhood of the origin. In Sections 2.9 and 2.10 we have

already presented some results for the case when the matrix of the linear part A = Df(0) has pure
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imaginary eigenvalues, i.e., when the origin is a center for the linearized system. In this section we give

some results established in [A − I] for the case when the matrix A has one or two zero eigenvalues, but

A , 0. And these results are extended to higher dimensions in Section 2.12.

First of all, note that if P and Q begin with m th-degree terms Pm and Qm, then it follows from Theorem

2 in Section 2.10 that if the function

1(θ) = cosθQm(cosθ, sinθ) − sinθPm(cosθ, sinθ)

is not identically zero, then there are at most 2(m + 1) directions θ = θ0 along which a trajectory of

(1) may approach the origin. These directions are given by solutions of the equation 1(θ) = 0. Suppose

that 1(θ) is not identically zero, then the solution curves of (1) which approach the origin along these

tangent lines divide a neighborhood of the origin into a finite number of open regions called sectors.

These sectors will be of one of three types as described in the following definitions; cf. [A-I] or [L]. The

trajectories which lie on the boundary of a hyperbolic sector are called separatrices. Cf. Definition 1 in

Section 3.11.

Definition 1. A sector which is topologically equivalent to the sector shown in Figure 1(a) is called a

hyperbolic sector. A sector which is topologically equivalent to the sector shown in Figure 1(b) is called

a parabolic sector. And a sector which is topologically equivalent to the sector shown in Figure 1(c) is

called an elliptic sector.

In Definition 1, the homeomorphism establishing the topological equivalence of a sector to one of the

sectors in Figure 1 need not preserve the direction of the flow; i.e., each of the sectors in Figure 1 with the

arrows reversed are sectors of the same type. For example, a saddle has a deleted neighborhood con-

sisting of four hyperbolic sectors and four separatrices. And a proper node has a deleted neighborhood

consisting of one parabolic sector. According to Theorem 2 below, the system

ẋ = y

ẏ = −x3 + 4xy

106



Nonlinear Systems

has an elliptic sector at the origin; cf. Problem 1 below. The phase portrait for this system is shown

in Figure 2. Every trajectory which approaches the origin does so tangent to the x-axis.

A deleted neighborhood of the origin consists of one elliptic sector, one hyperbolic sector, two

parabolic sectors, and four separatrices. Cf. Definition 1 and Problem 5 in Section 3.11. This type of

critical point is called a critical point with an elliptic domain; cf. [A-I].

Another type of nonhyperbolic critical point for a planar system is a saddle-node. A saddle-node

consists of two hyperbolic sectors and one parabolic sector (as well as three separatrices and the critical

point itself). According to Theorem 1 below, the system

ẋ = x2

ẏ = y

has a saddle-node at the origin. Even without Theorem 1, this system is easy to discuss since it can

be solved explicitly for x(t) = (1/x0 − t)−1 and y(t) = y0et. The phase portrait for this system is shown in

Figure 3.
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One other type of behavior that can occur at a nonhyperbolic critical point is illustrated by the

following example:

ẋ = y

ẏ = x2

The phase portrait for this system is shown in Figure 4. We see that a deleted neighborhood of the

origin consists of two hyperbolic sectors and two separatrices. This type of critical point is called a cusp.

As we shall see, besides the familiar types of critical points for planar analytic systems discussed in

Section 2.10, i.e., nodes, foci, (topological) saddles and centers, the only other types of critical points that

can occur for (1) when A , 0 are saddle-nodes, critical points with elliptic domains and cusps.

We first consider the case when the matrix A has one zero eigenvalue, i.e., when det A = 0, but

tr A , 0. In this case, as in Chapter 1 and as is shown in [A − I] on p. 338 , the system (1) can be put into

the form
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ẋ = p2(x, y) (2)

ẏ = y + q2(x, y)

where p2 and q2 are analytic in a neighborhood of the origin and have expansions that begin with

second-degree terms in x and y. The following theorem is proved on p. 340 in [A-I]. Cf. Section 2.12.

Theorem 1. Let the origin be an isolated critical point for the analytic system (2). Let y = φ(x) be

the solution of the equation y + q2(x, y) = 0 in a neighborhood of the origin and let the expansion of the

function ψ(x) = p2(x, φ(x)) in a neighborhood of x = 0 have the form ψ(x) = amxm + · · · where m ≥ 2 and

am , 0. Then (1) for m odd and am > 0, the origin is an unstable node, (2) for m odd and am < 0, the origin

is a (topological) saddle and (3) for m even, the origin is a saddle-node.

Next consider the case when A has two zero eigenvalues, i.e., det A = 0, tr A = 0, but A , 0. In this

case it is shown in [A-I], p. 356, that the system (1) can be put in the "normal" form
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ẋ = y

ẏ = akxk[1 + h(x)] + bnxny[1 + 1(x)] + y2R(x, y) (3)

where h(x), 1(x) and R(x, y) are analytic in a neighborhood of the origin, h(0) = 1(0) = 0, k ≥ 2, ak , 0

and n ≥ 1. Cf. Section 2.13. The next two theorems are proved on pp. 357-362 in [A-I].

Theorem 2. Let k = 2m + 1 with m ≥ 1 in (3) and let λ = b2
n + 4(m + 1)ak. Then if ak > 0, the origin is a

(topological) saddle. If ak < 0, the origin is (1) a focus or a center if bn = 0 and also if bn , 0 and n > m

or if n = m and λ < 0, (2) a node if bn , 0,n is an even number and n < m and also if bn , 0,n is an even

number, n = m and λ ≥ 0 and (3) a critical point with an elliptic domain if bn , 0,n is an odd number

and n < m and also if bn , 0,n is an odd number, n = m and λ ≥ 0.

Theorem 3. Let k = 2m with m ≥ 1 in (3). Then the origin is (1) a cusp if bn = 0 and also if bn , 0 and

n ≥ m and (2) a saddle-node if bn , 0 and n < m.

We see that if Df (x0) has one zero eigenvalue, then the critical point x0 is either a node, a (topological)

saddle, or a saddle-node; and if Df (x0) has two zero eigenvalues, then the critical point x0 is either a

focus, a center, a node, a (topological) saddle, a saddle-node, a cusp, or a critical point with an elliptic

domain.

Finally, what if the matrix A = 0 ? In this case, the behavior near the origin can be very complex. If

P and Q begin with m th-degree terms, then the separatrices may divide a neighborhood of the origin

into 2(m + 1) sectors of various types. The number of elliptic sectors minus the number of hyperbolic

sectors is always an even number and this number is related to the index of the critical point discussed

in Section 3.12 of Chapter 3. For example, the homogenous quadratic system

ẋ = x2 + xy

ẏ =
1
2

y2 + xy

has the phase portrait shown in Figure 5. There are two elliptic sectors and two parabolic sectors at

the origin. All possible types of phase portraits for homogenous, quadratic systems have been classified

by the Russian mathematician L.S. Lyagina [19]. For more information on the topic, cf. the book by

Nemytskii and Stepanov [N/S].

Remark. A critical point, x0, of (1) for which Df (x0) has a zero eigenvalue is often referred to as a

multiple critical point. The reason for this is made clear in Section 4.2 of Chapter 4 where it is shown

that a multiple critical point of (1) can be made to split into a number of hyperbolic critical points under
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a suitable perturbation of (1).
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