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Linear Systems 

This chapter presents a study of linear systems of ordinary differential 
equations: 

x=Ax 
where x ERn, A is an n x n matrix and 

dX1 

. dx x--­- dt -

dt 

dXn 

dt 

(1) 

It is shown that the solution of the linear system (1) together with the 
initial condition x(O) = Xo is given by 

x(t) = eAtxo 

where eAt is an n x n matrix function defined by its Taylor series. A good 
portion of this chapter is concerned with the computation of the matrix 
eAt in terms of the eigenvalues and eigenvectors of the square matrix A. 
Throughout this book all vectors will be written as column vectors and AT 
will denote the transpose of the matrix A. 

1.1 Uncoupled Linear Systems 

The method of separation of variables can be used to solve the first-order 
linear differential equation 

x = ax. 

The general solution is given by 

x(t) = ceat 

where the constant c = x(O), the value of the function x(t) at time t = O. 
Now consider the uncoupled linear system 

Xl = -Xl 

X2 = 2X2· 
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This system can be written in matrix form as 

x=Ax (1) 

where 

[-1 0] A= 0 2 . 

Note that in this case A is a diagonal matrix, A = diag[-l, 2), and in general 
whenever A is a diagonal matrix, the system (1) reduces to an uncoupled 
linear system. The general solution of the above uncoupled linear system 
can once again be found by the method of separation of variables. It is 
given by 

or equivalently by 

XI(t) = cle- t 

X2(t) = c2e2t 

x(t) = [e~t e~t] c 

(2) 

(2') 

where c = x(O). Note that the solution curves (2) lie on the algebraic 
curves y = k/x2 where the constant k = CIC2. The solution (2) or (2') 
defines a motion along these curves; i.e., each point c E R2 moves to the 
point x(t) E R2 given by (2') after time t. This motion can be described 
geometrically by drawing the solution curves (2) in the Xl, X2 plane, referred 
to as the phase plane, and by using arrows to indicate the direction of 
the motion along these curves with increasing time t; cf. Figure 1. For 
CI = C2 = 0, Xl (t) = 0 and X2(t) = 0 for all t E R and the origin is referred 
to as an equilibrium point in this example. Note that solutions starting on 
the xl-axis approach the origin as t ~ 00 and that solutions starting on 
the X2-axis approach the origin as t ~ -00. 

The phase portrait of a system of differential equations such as (1) with 
x E R n is the set of all solution curves of (1) in the phase space Rn. Figure 
1 gives a geometrical representation of the phase portrait of the uncoupled 
linear system considered above. The dynamical system defined by the linear 
system (1) in this example is simply the mapping ¢: R x R2 ~ R2 defined 
by the solution x(t, c) given by (2'); i.e., the dynamical system for this 
example is given by 

¢(t, c) = [e~t e~t] c. 

Geometrically, the dynamical system describes the motion of the points in 
phase space along the solution curves defined by the system of differential 
equations. 

The function 
f(x) = Ax 
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Figure 1 

on the right-hand side of (1) defines a mapping f: R2 ---+ R2 (linear in this 
case). This mapping (which need not be linear) defines a vector field on 
R2j i.e., to each point x E R2, the mapping f assigns a vector f(x). If we 
draw each vector f(x) with its initial point at the point x E R2, we obtain 
a geometrical representation of the vector field as shown in Figure 2. Note 
that at each point x in the phase space R2, the solution curves (2) are 
tangent to the vectors in the vector field Ax. This follows since at time 
t = to, the velocity vector Vo = x(to) is tangent to the curve x = x(t) at 
the point Xo = x(to) and since x = Ax along the solution curves. 

Consider the following uncoupled linear system in R3: 

Xl = Xl 

X2 = X2 

X3 = -X3 

(3) 
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Figure 3 

The general solution is given by 

Xl(t) = Clet 

xdt) = C2 et 

X3(t) = C3e-t. 

And the phase portrait for this system is shown in Figure 3 above. The 
Xl, X2 plane is referred to as the unstable subspace of the system (3) and 
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the X3 axis is called the stable subspace of the system (3). Precise definitions 
of the stable and unstable subspaces of a linear system will be given in the 
next section. 

PROBLEM SET 1 

1. Find the general solution and draw the phase portrait for the follow­
ing linear systems: 

(a) Xl = Xl 
X2 = X2 

(b) Xl = Xl 
X2 = 2X2 

(c) Xl = Xl 
X2 = 3X2 

(d) 
Xl = -X2 

X2 = Xl 

(e) Xl = -Xl + X2 

X2 = -X2 

Hint: Write (d) as a second-order linear differential equation with 
constant coefficients, solve it by standard methods, and note that xr+ 
x~ = constant on the solution curves. In (e), find X2(t) = C2e-t and 
then the xl-equation becomes a first order linear differential equation. 

2. Find the general solution and draw the phase portraits for the fol­
lowing three-dimensional linear systems: 

Xl = Xl 
(a) X2 = X2 

X3 = X3 

Xl = -Xl 

(b) X2 = -X2 

X3 = X3 

Xl = -X2 

(c) X2 = Xl 
X3 = -X3 

Hint: In (c), show that the solution curves lie on right circular cylin­
ders perpendicular to the Xl, X2 plane. Identify the stable and unsta­
ble subspaces in (a) and (b). The x3-axis is the stable subspace in (c) 
and the Xl, X2 plane is called the center subspace in (c); cf. Section 
1.9. 
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3. Find the general solution of the linear system 

where a is a constant. Sketch the phase portraits for a = -1, a = 0 
and a = 1 and notice that the qualitative structure of the phase 
portrait is the same for all a < 0 as well as for all a > 0, but that it 
changes at the parameter value a = 0 called a bifurcation value. 

4. Find the general solution of the linear system (1) when A is the 
n x n diagonal matrix A = diag[>'1, A2, ... ,An]. What condition on 
the eigenvalues A!, ... , An will guarantee that lim x(t) = 0 for all 

t->oo 
solutions x(t) of (I)? 

5. What is the relationship between the vector fields defined by 

x=Ax 

and 
x=kAx 

where k is a non-zero constant? (Describe this relationship both for 
k positive and k negative.) 

6. (a) If u(t) and vet) are solutions of the linear system (1), prove that 
for any constants a and b, wet) = au(t) + bv(t) is a solution. 

(b) For 

A = [~ _~], 
find solutions u(t) and vet) of x = Ax such that every solution 
is a linear combination of u(t) and vet). 

1.2 Diagonalization 

The algebraic technique of diagonalizing a square matrix A can be used to 
reduce the linear system 

x=Ax (1) 

to an uncoupled linear system. We first consider the case when A has real, 
distinct eigenvalues. The following theorem from linear algebra then allows 
us to solve the linear system (1). 

Theorem. If the eigenvalues AI, A2, . .. ,An of an n x n matrix A are real 
and distinct, then any set of corresponding eigenvectors {VI, V2, ... , v n } 

forms a basis for R n , the matrix P = [VI V2 ... v n ] is invertible and 

p-1 AP = diag[AI, ... , An]. 
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This theorem says that if a linear transformation T: R n ---+ R n is repre­
sented by the n x n matrix A with respect to the standard basis {e1, e2, ... , 
en} for Rn, then with respect to any basis of eigenvectors {V1, V2, ... , V n}, 
T is represented by the diagonal matrix of eigenvalues, diag[>'l, >'2,' .. , >'n]. 
A proof of this theorem can be found, for example, in Lowenthal [Lo]. 

In order to reduce the system (1) to an uncoupled linear system using 
the above theorem, define the linear transformation of coordinates 

y= p-1x 

where P is the invertible matrix defined in the theorem. Then 

x=Py, 
y = p-1x = p-1 Ax = p-1 APy 

and, according to the above theorem, we obtain the uncoupled linear system 

This uncoupled linear system has the solution 

y(t) = diag[eA1t , ... , eAnt]y(O). 

(Cf. problem 4 in Problem Set 1.) And then since y(O) = p-1X(O) and 
x(t) = Py(t), it follows that (1) has the solution 

x(t) = PE(t)P-1x(O). (2) 

where E(t) is the diagonal matrix 

E(t) = diag[ eA1t , ... , eAnt ]. 

Corollary. Under the hypotheses of the above theorem, the solution of the 
linear system (1) is given by the function x(t) defined by (2). 

Example. Consider the linear system 

Xl = -Xl - 3X2 

X2 = 2X2 

which can be written in the form (1) with the matrix 

A = [-~ -;]. 

The eigenvalues of A are >'1 = -1 and >'2 = 2. A pair of corresponding 
eigenvectors is given by 
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The matrix P and its inverse are then given by 

P = [01 -11] -1 [1 1] and P = 0 1 . 

The student should verify that 

P-1AP = [-1 0] o 2 . 

Then under the coordinate transformation y = p-lx, we obtain the un­
coupled linear system 

Yl = -Yl 

Y2 = 2Y2 

which has the general solution Yl(t) = cle- t , Y2(t) = c2e2t . The phase por­
trait for this system is given in Figure 1 in Section 1.1 which is reproduced 
below. And according to the above corollary, the general solution to the 
original linear system of this example is given by 

x(t) = P [e~t e~t] p-lc 

where c = x(O), or equivalently by 

Xl(t) = cle- t + c2(e-t - e2t ) 
(4) 

Figure 1 Figure 2 
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The phase portrait for the linear system of this example can be found by 
sketching the solution curves defined by (4). It is shown in Figure 2. The 
phase portrait in Figure 2 can also be obtained from the phase portrait in 
Figure 1 by applying the linear transformation of coordinates x = Py. Note 
that the subspaces spanned by the eigenvectors VI and V2 of the matrix 
A determine the staple and unstable subspaces of the linear system (1) 
according to the following definition: 

Suppose that the n x n matrix A has k negative eigenvalues AI, ... , Ak 
and n - k positive eig~nvalues Ak+l, ... ,An and that these eigenvalues are 
distinct. Let {v I, ... , 'v n} be a corresponding set of eigenvectors. Then the 
stable and unstable subspaces of the linear system (1), ES and EU, are the 
linear subspaces spanned by {VI,"" Vk} and {Vk+I,"" v n } respectively; 
i.e., 

E S = Span{vI, ... , vd 

E U = Span{vk+l,"" v n }. 

If the matrix A has pure imaginary eigenvalues, then there is also a center 
subspace Ee; cf. Problem 2(c) in Section 1.1. The stable, unstable and 
center subspaces are defined for the general case in Section 1.9. 

PROBLEM SET 2 

1. Find the eigenvalues and eigenvectors of the matrix A and show that 
B = p-I AP is a diagonal matrix. Solve the linear system y = By 
and then solve x = Ax using the above corollary. And then sketch 
the phase portraits in both the x plane and y plane. 

(a)A=[~ ~] 

(b) A = [~ n 
[-1 1] (c) A = 1 -1 . 

2. Find the eigenvalues and eigenvectors for the matrix A, solve the 
linear system x = Ax, determine the stable and unstable subspaces 
for the linear system, and sketch the phase portrait for 

[
1 0 0l x = 1 2 0 x. 
1 0 -1 J 

3. Write the following linear differential equations with constant coeffi­
cients in the form of the linear system (1) and solve: 
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(a) £ + x - 2x = 0 

(b) £ + x = 0 

(c) £ - 2£ - x + 2x = 0 

Hint: Let Xl = X, X2 = Xl, etc. 

1. Linear Systems 

4. Using the corollary of this section solve the initial value problem 

x=Ax 

x(o) = Xo 

(a) with A given by l(a) above and Xo = (1, 2)T 

(b) with A given in problem 2 above and Xo = (1,2, 3)T. 

5. Let the n x n matrix A have real, distinct eigenvalues. Find conditions 
on the eigenvalues that are necessary and sufficient for lim x(t) = 0 

t ..... oo 

where x(t) is any solution of x = Ax. 

6. Let the n x n matrix A have real, distinct eigenvalues. Let ¢(t, xo) 
be the solution of the initial value problem 

x=Ax 

x(o) = Xo. 

Show that for each fixed t E R, 

lim ¢(t,yo) = ¢(t,xo). 
Yo---4X o 

This shows that the solution ¢(t, xo) is a continuous function of the 
initial condition. 

7. Let the 2 x 2 matrix A have real, distinct eigenvalues A and J1. Suppose 
that an eigenvector of A is (1, 0) T and an eigenvector of J1 is (-1, 1) T . 

Sketch the phase portraits of x = Ax for the following cases: 

(a) 0 < A < J1 

(d) A<O<J1 

(b) 0 < J1 < A 

(e) J1 < 0 < A 

(C)A<J1<O 

(f) A = 0, J1 > o. 

1.3 Exponentials of Operators 

In order to define the exponential of a linear operator T: R n -+ R n, it is 
necessary to define the concept of convergence in the linear space L(Rn) of 
linear operators on Rn. ThIS is done using the operator norm of T defined 
by 

liT II = max IT(x)1 
Ixl9 
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where Ixl denotes the Euclidean norm of x ERn; i.e., 

The operator norm has all of the usual properties of a norm, namely, for 
S, T E L(Rn) 

(a) IITII ~ 0 and IITII = 0 iff T = 0 

(b) IIkTl1 = IklllTl1 for k E R 

(c) liS + Til::; IISII + IITII· 

It follows from the Cauchy-Schwarz inequality that if T E L(Rn) is rep­
resented by the matrix A with respect to the standard basis for R n , then 
IIAII ::; Vn£ where £ is the maximum length of the rows of A. 

The convergence of a sequence of operators Tk E L(Rn) is then defined 
in terms of the operator norm as follows: 

Definition 1. A sequence of linear operators Tk E L(Rn) is said to con­
verge to a linear operator T E L(Rn) as k -+ 00, i.e., 

lim Tk = T, 
k-+oo 

if for all c > 0 there exists an N such that for k ~ N, liT - Tkll < c. 

Lemma. FOT" S, T E L(Rn) and x ERn, 

(1) IT(x)l::; IITlllxl 

(2) fITSII::; IITIlIISII 

(3) IITkll::; IITllk JOT" k = 0,1,2, .... 

Proof. (1) is obviously true for x = o. For x =f. 0 define the unit vector 
y = x/lxl. Then from the definition of the operator norm, 

IITII ~ IT(y)1 = I~IIT(X)I. 

(2) For Ixl ::; 1, it follows from (1) that 

Therefore, 

IT(S(x))I::; IITIIIS(x)1 

::; IITllllSlllxl 

::; IITIIII SII· 

IITSII = max ITS(x)1 ::; IITIIIISII 
Ixl::;! 
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and (3) is an immediate consequence of (2). 

Theorem. Given T E L(Rn) and to > 0, the series 

is absolutely and uniformly convergent for all It I :::; to. 

Proof. Let IITII = a. It then follows from the above lemma that for It I :::; to, 

But 
00 ktk 
,,~ =eato 
L-- k! . 
k=O 

It therefore follows from the Weierstrass M-Test that the series 

is absolutely and uniformly convergent for all It I :::; to; cf. [RJ, p. 148. 
The exponential of the linear operator T is then defined by the absolutely 

convergent series 
00 Tk 

eT = Lkf· 
k=O 

It follows from properties of limits that eT is a linear operator on R n and 
it follows as in the proof of the above theorem that lIeT II :::; eiITII. 

Since our main interest in this chapter is the solution of linear systems 
of the form 

x=Ax, 

we shall assume that the linear transformation T on R n is represented by 
the n x n matrix A with respect to the standard basis for R n and define 
the exponential eAt. 

Definition 2. Let A be an n x n matrix. Then for t E R, 

For an n x n matrix A, eAt is an n x n matrix which can be computed in 
terms of the eigenvalues and eigenvectors of A. This will be carried out in 
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the remainder of this chapter. As in the proof of the above theorem IleAtl1 :::; 
ellAllltl where IIAII = IITII and T is the linear transformation T(x) = Ax. 

We next establish some basic properties of the linear transformation eT 

in order to facilitate the computation of eT or of the n x n matrix eA. 

Proposition 1. If P and T are linear transformations on R nand S = 
PTP-1, then eS = PeT p-1. 

Proof. It follows from the definition of eS that 

S = 1· ~ (PTP- 1)k = P 1. ~ T k p _1 = P Tp-1 
e 1m ~ k' 1m ~ k' e. 

n-+(X) . n-+oo. 
k=O k=O 

The next result follows directly from Proposition 1 and Definition 2. 

Corollary 1. If P-1AP = diag[Aj] then eAt = Pdiag[eAjt jP-1. 

Proposition 2. If Sand T are linear transformations on R n which com­
mute, i.e., which satisfy ST = TS, then eS+T = eSeT . 

Proof. If ST = TS, then by the binomial theorem 

Therefore, 

SjTk 
(S + T)n = n! L --:-rk!. 

j+k=n J 

We have used the fact that the product of two absolutely convergent series 
is an absolutely convergent series which is given by its Cauchy product; cf. 
[RJ, p. 74. 

Upon setting S = -T in Proposition 2, we obtain 

Corollary 2. If T is a linear transformation on R n , the inverse of the 
linear transformation eT is given by (eT)-l = e-T . 

Corollary 3. If 

A = [~ -:] 

then 
A _ a [COSb -sinb] 

e -e sinb cosb· 
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Proof. If >. = a + ib, it follows by induction that 

where Re and 1m denote the real and imaginary parts of the complex 
number >. respectively. Thus, 

A _ ~ [Re(~~) -Im(~~)l 
e - ~ (Ak) (Ak) 

k=O 1m kT Re kT 

_ [Re( eA) - Im( eA ) ] 

- Im(eA) Re(eA) 

= ea [C~Sb 
smb 

- sinb] 
cosb . 

Note that if a = 0 in Corollary 3, then eA is simply a rotation through 
b radians. 

Corollary 4. If 

A= [~ !] 
then 

A a [1 b] e =e 0 1 . 

Proof. Write A = aI + B where 

Then aI commutes with B and by Proposition 2, 

And from the definition 

eB = I + B + B 2/2! + ... = I + B 

since by direct computation B2 = B3 = ... = o. 
We can now compute the matrix eAt for any 2 x 2 matrix A. In Section 1.8 

of this chapter it is shown that there is an invertible 2 x 2 matrix P (whose 
columns consist of generalized eigenvectors of A) such that the matrix 

B = P-1AP 

has one of the following forms 
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It then follows from the above corollaries and Definition 2 that 

Bt [eAt 0] 
e = 0 eJ-Lt , 

Bt _ At [1 t] 
e - e 0 1 

Bt _ at [cos bt 
or e - e sinbt 
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- sinbt] 
cosbt 

respectively. And by Proposition 1, the matrix eAt is then given by 

eAt = PeBt p-1. 

As we shall see in Section 1.4, finding the matrix eAt is equivalent to solving 
the linear system (1) in Section 1.1. 

PROBLEM SET 3 

1. Compute the operator norm of the linear transformation defined by 
the following matrices: 

(a) [~ _~] 

(b) [~ _~] 

(c) [! ~]. 
Hint: In (c) maximize IAxl2 = 26xi + lOx1x2 + x~ subject to the 
constraint xi + x~ = 1 and use the result of Problem 2; or use the 
fact that IIAII = [Max eigenvalue of AT AF/2. 

2. Show that the operator norm of a linear transformation T on R n 

satisfies 

IITII = max IT(x) I = sup IT1(xl)l. 
Ixl=1 x#O x 

3. Use the lemma in this section to show that if T is an invertible linear 
transformation then IITII > 0 and 

-1 1 
liT II;::: TITIT' 

4. If T is a linear transformation on R n with liT - III < 1, prove that T 
is invertible and that the series E~=o(I - T)k converges absolutely 
to T- 1. 

Hint: Use the geometric series. 

5. Compute the exponentials of the following matrices: 

(b) [~ -n (c) [! ~] 
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(d) [5 -6] 
3 -4 (e) (f) 

6. (a) For each matrix in Problem 5 find the eigenvalues of eA. 

(b) Show that if x is an eigenvector of A corresponding to the eigen­
value A, then x is also an eigenvector of eA corresponding to the 
eigenvalue eA. 

(c) If A = P diag[ Aj 1 p-1 , use Corollary 1 to show that 

det eA = etrace A. 

Also, using the results in the last paragraph of this section, show 
that this formula holds for any 2 x 2 matrix A. 

7. Compute the exponentials of the following matrices: 

(a) [~~ ~ 1 (b) [~ ~ !l (c) [i ~ ~l' o 1 2 

Hint: Write the matrices in (b) and (c) as a diagonal matrix S plus 
a matrix N. Show that Sand N commute and compute eS as in part 
(a) and eN by using the definition. 

8. Find 2 x 2 matrices A and B such that eA +B =1= eAeB . 

9. Let T be a linear operator on R n that leaves a subspace E c R n 

invariant; i.e., for all x E E, T(x) E E. Show that eT also leaves E 
invariant. 

1.4 The Fundamental Theorem for Linear 
Systems 

Let A be an n x n matrix. In this section we establish the fundamental fact 
that for Xo E R n the initial value problem 

x=Ax 
x(O) = Xo 

has a unique solution for all t E R which is given by 

(1) 

(2) 

Notice the similarity in the form of the solution (2) and the solution x(t) = 
eatxo of the elementary first-order differential equation x = ax and initial 
condition x(O) = Xo. 
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In order to prove this theorem, we first compute the derivative of the 
exponential function eAt using the basic fact from analysis that two con­
vergent limit processes can be interchanged if one of them converges uni­
formly. This is referred to as Moore's Theorem; cf. Graves [G], p. 100 or 
Rudin [RJ, p. 149. 

Lemma. Let A be a square matrix, then 

Proof. Since A commutes with itself, it follows from Proposition 2 and 
Definition 2 in Section 3 that 

d eA(t+h) _ eAt 
_eAt = lim -----
dt h-+O h 

= lim eAt (eAh - I) 
h-+O h 

= eAt lim lim A + -- + ... + ---:-:--( A 2h Akhk-l) 
h-+O k-+oo 2! k! 

= AeAt . 

The last equality follows since by the theorem in Section 1.3 the series defin­
ing eAh converges uniformly for Ihl :S 1 and we can therefore interchange 
the two limits. 

Theorem (The Fundamental Theorem for Linear Systems). Let A 
be an n x n matrix. Then for a given Xo ERn, the initial value problem 

has a unique solution given by 

x=Ax 
x(O) = xo 

Proof. By the preceding lemma, if x(t) = eAtxo, then 

d 
x'(t) = dt eAtxo = AeAtxo = Ax(t) 

(1) 

(2) 

for all t E R. Also, x(O) = Ixo = Xo. Thus x(t) = eAtxo is a solution. To 
see that this is the only solution, let x(t) be any solution of the initial value 
pro blem (1) and set 

y(t) = e-Atx(t). 
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Then from the above lemma and the fact that x(t) is a solution of (1) 

y'(t) = -Ae-Atx(t) + e-Atx'(t) 

= -Ae-Atx(t) + e-At Ax(t) 

=0 

for all t E R since e-At and A commute. Thus, yet) is a constant. Setting 
t = 0 shows that yet) = Xo and therefore any solution of the initial value 
problem (1) is given by x(t) = eAty(t) = eAtxo. This completes the proof 
of the theorem. 

Example. Solve the initial value problem 

x=Ax 

x(O) = [~] 
for 

A = [-i =~] 
and sketch the solution curve in the phase plane R 2 • By the above theorem 
and Corollary 3 of the last section, the solution is given by 

x(t) = eAtx = e-2t [c~s t - sin t] [1] = e-2t [c~s t] . 
o smt cost 0 smt 

It follows that Ix(t)1 = e-2t and that the angle e(t) = tan- 1 X2(t)/Xl(t) = t. 
The solution curve therefore spirals into the origin as shown in Figure 1 
below. 

------T--iI::-+-----"--- X I 

Figure 1 
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PROBLEM SET 4 

1. Use the forms of the matrix eBt computed in Section 1.3 and the 
theorem in this section to solve the linear system x = Bx for 

(a)B=[~~] 

(b) B = [~ l] 
[a -ab]. (c) B = b 

2. Solve the following linear system and sketch its phase portrait 

. [-1 -1] x = 1 -1 x. 

The origin is called a stable focus for this system. 

3. Find eAt and solve the linear system x = Ax for 

(a)A=[~ !] 
(b) A = [! ~]. 

Cf. Problem 1 in Problem Set 2. 

4. Given 

A=[~ ~ ~]. 
1 0 -1 

Compute the 3 x 3 matrix eAt and solve x = Ax. Cf. Problem 2 in 
Problem Set 2. 

5. Find the solution of the linear system x = Ax where 

(a)A=[~-;] 

(b) A = [~ -;] 

(C)A=[~~] 

(d) A ~ n -~ J]. 
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6. Let T be a linear transformation on R n that leaves a subspace E C 

R n invariant (i.e., for all x E E, T(x) E E) and let T(x) = Ax with 
respect to the standard basis for lin. Show that ifx(t) is the solution 
of the initial value problem 

x=Ax 
x(O) = Xo 

with Xo E E, then x(t) E E for all t E R. 

7. Suppose that the square matrix A has a negative eigenvalue. Show 
that the linear system x = Ax has at least one nontrivial solution 
x(t) that satisfies 

lim x(t) = o. 
t--->oo 

8. (Continuity with respect to initial conditions.) Let ¢J(t,xo) be the so­
lution of the initial value problem (1). Use the Fundamental Theorem 
to show that for each fixed t E R 

lim ¢J(t, y) = ¢J(t, xo). 
y~xo 

1.5 Linear Systems in R 2 

In this section we discuss the various phase portraits that are possible for 
the linear system 

x=Ax (1) 

when x E R2 and A is a 2 x 2 matrix. We begin by describing the phase 
portraits for the linear system 

x=Bx (2) 

where the matrix B = p-1 AP has one of the forms given at the end of 
Section 1.3. The phase portrait for the linear system (1) above is then 
obtained from the phase portrait for (2) under the linear transformation of 
coordinates x = Pyas in Figures 1 and 2 in Section 1.2. 

First of all, if 

B = [A 0] o J.l ' 
[A 1] [a -b] B=OA,orB=b a' 

it follows from the fundamental theorem in Section 1.4 and the form of the 
matrix eBt computed in Section 1.3 that the solution of the initial value 
problem (2) with x(O) = Xo is given by 

[
eAt 0] 

x( t) = 0 el"t xo, 
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or 
x(t) = eat [C?S bt - sin bt] x 

smbt cosbt 0 

respectively. We now list the various phase portraits that result from these 
solutions, grouped according to their topological type with a finer classifi­
cation of sources and sinks into various types of unstable and stable nodes 
and foci: 

Case I. B = [~ ~] with), < 0 < J.L. 

--------~----.---~---------Xl 

Figure 1. A saddle at the origin. 

The phase portrait for the linear system (2) in this case is given in Figure 
1. See the first example in Section 1.1. The system (2) is said to have a 
saddle at the origin in this case. If J.L < 0 < )., the arrows in Figure 1 are 
reversed. Whenever A has two real eigenvalues of opposite sign, ). < 0 < J.L, 
the phase portrait for the linear system (1) is linearly equivalent to the 
phase portrait shown in Figure 1; i.e., it is obtained from Figure 1 by a 
linear transformation of coordinates; and the stable and unstable subs paces 
of (1) are determined by the eigenvectors of A as in the Example in Section 
1.2. The four non-zero trajectories or solution curves that approach the 
equilibrium point at the origin as t ----+ ±oo are called separatrices of the 
system. 

Case II. B = [~ ~] with), ::; J.L < 0 or B = [~ ~] with), < O. 

The phase portraits for the linear system (2) in these cases are given in 
Figure 2. Cf. the phase portraits in Problems l(a), (b) and (c) of Problem 
Set 1 respectively. The origin is referred to as a stable node in each of these 
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cases. It is called a proper node in the first case with A = J.L and an improper 
node in the other two cases. If A ~ J.L > 0 or if A > 0 in Case II, the arrows 
in Figure 2 are reversed and the origin is referred to as an unstable node. 
Whenever A has two negative eigenvalues A :::; J.L < 0, the phase portrait 
of the linear system (1) is linearly equivalent to one of the phase portraits 
shown in Figure 2. The stability of the node is determined by the sign of 
the eigenvalues: stable if A :::; J.L < 0 and unstable if A ~ J.L > O. Note that 
each trajectory in Figure 2 approaches the equilibrium point at the origin 
along a well-defined tangent line () = (}o, determined by an eigenvector of 
A, as t -+ 00. 

A<O 

Figure 2. A stable node at the origin. 

[a -b] Case III. B = b a with a < O. 

b:>O 
b<O 

Figure 3. A stable focus at the origin. 

The phase portrait for the linear system (2) in this case is given in 
Figure 3. Cf. Problem 9. The origin is referred to as a stable focus in these 
cases. If a> 0, the trajectories spiral away from the origin with increasing 
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t and the origin is called an unstable focus. Whenever A has a pair of 
complex conjugate eigenvalues with nonzero real part, a ± ib, with a < 0, 
the phase portraits for the system (1) is linearly equivalent to one of the 
phase portraits shown in Figure 3. Note that the trajectories in Figure 3 do 
not approach the origin along well-defined tangent lines; i.e., the angle B(t) 
that the vector x(t) makes with the xl-axis does not approach a constant 
Bo as t ---t 00, but rather IB(t)1 ---t 00 as t ---t 00 and Ix(t)1 ---t ° as t ---t 00 in 
this case. 

[0 -b] Case IV. B = b ° 
The phase portrait for the linear system (2) in this case is given in Figure 

4. Cf. Problem 1 (d) in Problem Set 1. The system (2) is said to have a center 
at the origin in this case. Whenever A has a pair of pure imaginary complex 
conjugate eigenvalues, ±ib, the phase portrait of the linear system (1) is 
linearly equivalent to one of the phase portraits shown in Figure 4. Note 
that the trajectories or solution curves in Figure 4 lie on circles Ix(t)1 = 
constant. In general, the trajectories of the system (1) will lie on ellipses 
and the solution x(t) of (1) will satisfy m ::; Jx(t)J ::; M for all t E R; cf. 
the following Example. The angle B(t) also satisfies JB(t)J ---t 00 as t ---t 00 

in this case. 

b>O b<O 

Figure 4. A center at the origin. 

If one (or both) of the eigenvalues of A is zero, i.e., if detA = 0, the 
origin is called a degenerate equilibrium point of (1). The various portraits 
for the linear system (1) are determined in Problem 4 in this case. 

Example (A linear system with a center at the origin.) The linear 
system 

x=Ax 

with 
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has a center at the origin since the matrix A has eigenvalues >. = ±2i. 
According to the theorem in Section 1.6, the invertible matrix 

reduces A to the matrix 

The student should verify the calculation. 
The solution to the linear system x = Ax, as determined by Sections 1.3 

and 1.4, is then given by 

x(t) = P [c~s 2t - sin 2t] p-1c = [ cos 2t -2 sin 2t] 
sm 2t cos 2t 1/2 sin 2t cos 2t c 

where c = x(O), or equivalently by 

Xl (t) = Cl cos 2t - 2C2 sin 2t 

X2(t) = 1/2cl sin2t + C2 cos2t. 

It is then easily shown that the solutions satisfy 

xi(t) + 4x~(t) = ci + 4c~ 

for all t E R; i.e., the trajectories of this system lie on ellipses as shown in 
Figure 5. 

---+--+--+---+--+--t--+--- X I 

Figure 5. A center at the origin. 

Definition 1. The linear system (1) is said to have a saddle, a node, a 
focus or a center at the origin if the matrix A is similar to one of the 
matrices B in Cases I, II, III or IV respectively. i.e., if its phase portrait 


