3<sup>rd</sup> year GP

## Series $N^\circ\,2$

## **Exercise 01**

Identify all possible electronic transitions for the following molecules:



## Exercise 02

- 1. Calculate Emax for a compound with the following data:
  - Maximum absorption  $(\mathbf{A}) = 1.2$
  - Path length of the cell (I) = 1 cm
  - $\circ$  Concentration = 1.9 mg in 25 mL of solution
  - Molar mass = 100 g/mol
- 2. Calculate the molar absorptivity coefficient for a solution with:
  - Concentration =  $10^{-4}$  M
  - Path length of the cuvette (l) = 2 cm
  - Incident light intensity  $(I_0) = 85.4$
  - Transmitted light intensity (I) = 20.3
  - 0

## Exercise 03

A potassium permanganate aqueous solution ( $C = 1.28 \times 10^{-4} \text{ M}$ ) has a transmittance of 0.5 at 525 nm when using a cuvette with a 10 mm optical path length.

- 1. Calculate the molar absorptivity coefficient of permanganate at this wavelength.
- 2. If the concentration is doubled, calculate the **absorbance** and **transmittance** of the new solution.