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CHAPTER 1

NONLINEAR SYSTEMS: LOCAL

THEORY

exercise 48

Linearize the nonlinear system

ẋ = e−x−3y
− 1

ẏ = −x
(
1 − y2

)
about the fixed point (0, 0) and then classify the fixed point.

exercise 49

Draw the phase portraits of ẍ + x = ax2 for the three values a = 0,−1, 1.

exercise 50

Show that the equilibrium point is a stable focus for the damped linear pendulum ẍ + ẋ + x = 0. Draw

the phase diagram of the system.
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CHAPTER 1. NONLINEAR SYSTEMS: LOCAL THEORY

exercise 51

Obtain all critical points of the system ẋ = sin y, ẏ = cos x. Linearize the system about the critical point(
π
2 , 0
)
. Find the equation of the phase path.

exercise 52

Classify the equilibrium points of the system

ẋ = x − y

ẏ = x2
− 1

exercise 53

Consider a nonlinear system

ẋ = 1 − (a + 1)x + bx2y

ẏ = ax − bx2y

where a and b are positive parameters.

(i) Show that (1, a/b) is the only critical point of the system,

(ii) linearize the system about this critical point.

exercise 54

Find all fixed points of the system

ẋ = x(y − 1)

ẏ = 3x − 2y + x2
− 2y2

Linearize the system about the fixed point (0, 0). Comment about the stability around this fixed point.

exercise 55

Show that the solution of the autonomous system ẋ = y, ẏ = −x with x(0) = 0, y(0) = 0 is stable in the

sense of Lyapunov.
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CHAPTER 1. NONLINEAR SYSTEMS: LOCAL THEORY

exercise 56

Prove that each solution of the equation ẋ + x = 0 is asymptotically stable.

exercise 57

Prove that all solutions of the system ẋ = sin2 x are bounded on (−∞,+∞) but the solution x(t) = 0 is

unstable as t→∞.

exercise 58

Using suitable Lyapunov functions, examine the stabilities for the following systems:

(i) ẍ + x = 0,

(ii) ẋ = x, ẏ = −y at the origin.

exercise 59

Examine different stability criteria satisfied by the linear harmonic oscillator ẍ + x = 0.

exercise 60

Show that the system ẋ = −y
(
x2 + y2

)1/2
, ẏ = x

(
x2 + y2

)1/2
is orbitally stable but not Lyapunov stable.

exercise 61

Investigate the stability of the system

dx
dt

= −(x − 2y)
(
1 − x2

− 3y2
)

dy
dt

= −(y + x)
(
1 − x2

− 3y2
)

at the fixed point origin.
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CHAPTER 1. NONLINEAR SYSTEMS: LOCAL THEORY

exercise 62

Using a suitable Lyapunov function shows that the origin is an asymptotically stable equilibrium point

of the system

ẋ = −2y + yz − x3

ẏ = x − xz − y3

ż = xy − z3
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