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CHAPTER 1

LINEAR SYSTEMS

exercise 1

Find the general solution and draw the phase portrait for the following linear systems:

(a)

ẋ1 = x1

ẋ2 = x2

(b)

ẋ1 = x1

ẋ2 = 2x2

(c)

ẋ1 = x1

ẋ2 = 3x2

(d)

ẋ1 = −x2

ẋ2 = x1

(e)

ẋ1 = −x1 + x2

ẋ2 = −x2

Hint: Write (d) as a second-order linear differential equation with constant coefficients, solve it by

standard methods, and note that x2
1+ x2

2 = constant on the solution curves. In (e), find x2(t) = c2e−t and
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CHAPTER 1. LINEAR SYSTEMS

then the x1-equation becomes a first order linear differential equation.

solution

Let x = (x1, x2, x3)> = (x, y, z)> and x(0) =
(
x0, y0, z0

)>.

1. (a) x(t) = x0et, y(t) = y0et, and solution curves lie on the straight lines y =
(
y0/x0

)
x or on the

y-axis. The phase portrait is given in 1.1.
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CHAPTER 1. LINEAR SYSTEMS

Figure 1.1: Phase portrait

(b) x(t) = x0et, y(t) = y0e21, and solution curves, other than those on the x and y axes, lie on the

parabolas y =
(
y0/x2

0

)
x2. Cf. 1.2.

Figure 1.2: Phase portrait

(c) x(t) = x0et,y(t) = y0e34, and solution curves lie on the curves y =
(
y0/x3

0

)
x3.

(d) ẋ = −y, ẏ = x can be written as ẏ = ẋ = −y or ẏ + y = 0 which has the general solu-

tion y(t) = c1 cos t + c2 sin t; thus, x(t) = ẏ(t) = −c1 sin t + c2 cos t; or in terms of the initial conditions

x(t) = x0 cos t − y0 sin t and y(t) = x0 sin t + y0 cos t. It follows that for all t ∈ R, x2(t) + y2(t) = x2
0 + y2

0 and

solution curves lie on these circles. Cf. Figure 1.3.

(e) y(t) = c2e−1 and then solving the first-order linear differential equation ẋ + x = c2e−t leads to
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CHAPTER 1. LINEAR SYSTEMS

Figure 1.3: Phase portrait

x(t) = c1e−1 + c2te−1 with c1 = x0 and c2 = y0. Cf. Figure 1.4.

Figure 1.4: Phase portrait
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CHAPTER 1. LINEAR SYSTEMS

exercise 2

Find the general solution and draw the phase portraits for the following three-dimensional linear systems:

(a)

ẋ1 = x1

ẋ2 = x2

ẋ3 = x3

(b)

ẋ1 = −x1

ẋ2 = −x2

ẋ3 = x3

(c)

ẋ1 = −x2

ẋ2 = x1

ẋ3 = −x3

Hint: In (c), show that the solution curves lie on right circular cylinders perpendicular to the x1, x2

plane. Identify the stable and unstable subspaces in (a) and (b). The x3-axis is the stable subspace in (c)

and the x1, x2 plane is called the center subspace in (c); cf. Section 1.9 in the course .

solution

2.

(a) x(t) = x0et, y(t) = y0et, z(t) = z0et, and Ea = R3.

(b) x(t) = x0e−1, y(t) = y0e−1, z(t) = z0et,Es = Span
{
(1, 0, 0)T, (0, 1, 0)T

}
, and Ea = Span {(0, 0, 1)}. Cf. 1.5

with the arrows reversed.

(c) x(t) = x0 cos t− y0 sin t, y(t) = x0 sin t + y0 cos t, z(t) = z0e−t; solution curves lie on the cylinders x2 +

y2 = c2 and approach circular periodic orbits in the x, y plane as t→∞; Ec = Span
{
(1, 0, 0)T, (0, 1, 0)T

}
,Es =

Span
{
(0, 0, 1)T

}
.

exersise 3

3. Find the general solution of the linear system

ẋ1 = x1

ẋ2 = ax2
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CHAPTER 1. LINEAR SYSTEMS

where a is a constant. Sketch the phase portraits for a = −1, a = 0 and a = 1 and notice that the qualitative

structure of the phase portrait is the same for all a < 0 as well as for all a > 0, but that it changes at the

parameter value a = 0 called a bifurcation value.

solution

3. x(t) = x0et, y(t) = y0ex.

Figure 1.5: Phase portrait

exercise 4

Find the general solution of the linear system (1) when A is the n×n diagonal matrix A = diag [λ1, λ2, . . . , λn].

What condition on the eigenvaluesλ1, . . . , λn will guarantee that limt→∞ x(t) = 0 for all solutions x(t) of (1)

solution

x1(t) = x10eλ11 , x2(t) = x20eλ2t, · · · , xn(t) = x20eλ3t. Thus, x(t)→ 0 as t→∞ for all x0 ∈ Rn if λ1 < 0, · · · , λn <

0 (and also if Re

(
λ j

)
< 0 for j = 1, 2, · · · ,n ).

exercise 5

What is the relationship between the vector fields defined by

ẋ = Ax

and

ẋ = kAx
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CHAPTER 1. LINEAR SYSTEMS

where k is a non-zero constant? (Describe this relationship both for k positive and k negative.)

solution

If k > 0, the vectors Ax and kAx point in the same direction and they are related by the scale factor

k.

If k < 0, the vectors Ax and kAx point in opposite directions and are related by the scale factor |k|.

exercise 6

(a) If u(t) and v(t) are solutions of the linear system (1), prove that for any constants a and b,w(t) =

au(t) + bv(t) is a solution.

(b) For

A =

 1 0

0 −2


find solutions u(t) and v(t) of ẋ = Ax such that every solution is a linear combination of u(t) and v(t).

solution

6. (a) ẇ(t) = au̇(t) + bv̇(t) = aAu(t) + bAv(t) = A[au(t) + bv(t)] = Aw(t) for all t ∈ R.

(b) u(t) =
(
et, 0

)T ,v(t) =
(
0, e−22

)T
and the general solution of ẋ = Ax is given by x(t) = x0u(t) + y0v(t).
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