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INTRODUCTION

This course covers those topics necessary for a clear understanding of the qualitative theory of ordinary

differential equations and the concept of a dynamical system. It is written for ferst yers master students.

It begins with a study of linear systems of ordinary differential equations, a topic already familiar to

the student who has completed a first course in differential equations. An efficient method for solving any

linear system of ordinary differential equations is presented in Chapter 1. The major part of this course

is devoted to a study of nonlinear systems of ordinary differential equations and dynamical systems.

Since most nonlinear differential equations cannot be solved, this course focuses on the qualitative or

geometrical theory of nonlinear systems of differential equations originated by Henri Poincarc in his

work on differential equations at the end of the nineteenth century as well as on the functional properties

inherent in the solution set of a system of nonlinear differential equations embodied in the more recent

concept of a dynamical system. Our primary goal is to describe the qualitative behavior of the solution

set of a given system of differential equations including the invariant sets and limiting behavior of

the dynamical system or flow defined by the system of differential equations. In order to achieve this

goal, it is first necessary to develop the local theory for nonlinear systems. This is done in Chapter 2

which includes the fundamental local existence-uniqueness theorem, the Hartman-Grobman Theorem

and the Stable Manifold Theorem. These latter two theorems establish that the qualitative behavior of

the solution set of a nonlinear system of ordinary differential equations near an equilibrium point is

typically the same as the qualitative behavior of the solution set of the corresponding linearized system

near the equilibrium point.
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CHAPTER 1

CONTINUOUS DYNAMICAL SYSTEMS

1.1 Dynamical Systems

Dynamics is primarily the study of the time-evolutionary process and the corresponding system of

equations is known as dynamical system. Generally, a system of n first-order differential equations in

the space R∗ is called a dynamical system of dimension n which determines the time behavior of evo-

lutionary process. Evolutionary processes may possess the properties of determinacy/non-determinacy,

finite/infinite dimensionality, and differentiability. A process is called deterministic if its entire future

course and its entire past are uniquely determined by its state at the present time. Otherwise, the pro-

cess is called nondeterministic. However, the process may be semi-deterministic (determined, but not

uniquely). In classical mechanics the motion of a system whose future and past are uniquely determined

by the initial positions and the initial velocities is an example of a deterministic dynamical system. The

evolutionary process may describe, viz. (i) a continuous-time process and (ii) a discrete-time process.

The continuous-time process is represented by differential equations, whereas the discrete-time process

is by difference equations (or maps). The continuous-time dynamical systems may be described mathe-

matically as follows:

Let x = x(t) ∈ Rn, t ∈ I ⊆ R be the vector representing the dynamics of a continuous system (continuous-

time system). The mathematical representation of the system may be written as

dx
dt

= ẋ = f (x, t) (1.1)
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Continuous Dynamical Systems

where f (x, t) is a sufficiently smooth function defined on some subset U ⊂ Rn
× R. Schematically, this

can be shown as

Rn
(state space)

× R
(time)

= Rn+1

(space of motions)

The variable t is usually interpreted as time and the function f (x, t) is generally nonlinear. The time

interval may be finite, semi-finite or infinite. On the other hand, the discrete system is related to a

discrete map (given only at equally spaced points of time) such that from a point x0, one can obtain a

point x1 which in turn maps into x2, and so on. In other words, xn+1 = 1 (xn) = 1
(
1 (xn−1)

)
, etc. This is

also written in the form xn+1 = 1 (xn) = 12 (xn−1) = · · · . The discrete system will be discussed in the later

course .

If the right-hand side of Eq.1.1 is explicitly time independent then the system is called autonomous.

The trajectories of such a system do not change in time. On the other hand, if the right-hand side of Eq.

1.1 has explicit dependence on time then the system is called nonautonomous.

An n-dimensional nonautonomous system can be converted into autonomous form by introducing a

new dependent variable xn+1 such that xn+1 = t. In general, the solution of Eq. 1.1 is difficult or sometimes

impossible to obtain when the function f (x, t) is nonlinear, except in some special cases. Examples of

autonomous and nonautonomous systems are given below.

(i) Autonomous systems

(a) ẍ + αẋ + βx = 0, α, β > 0. This is a damped linear harmonic oscillator. The parameters α and β are,

respectively, the strength of damping and the strength of linear restoring force.

(b) ẍ + ω2 sin x = 0, ω =
√
1/L.g is the gravitational acceleration, L the string length. This is a simple

undamped nonlinear oscillator (pendulum).

(c)
ẋ = αx − βxy

ẏ = −γy + δxy

. . This is the well-known Lotka-Volterra predator-prey model, where α, β, γ, δ are

all positive constants.

(d) ẍ − µ
(
1 − x2

)
ẋ + βx = 0, µ > 0. This is the well-known van der Pol oscillator.

(ii) Nonautonomous systems

(a) ẍ + αẋ + βx = f cosωt, α, β > 0. This is an example of linear oscillator with external time-dependent

force. f and ω are the amplitude and frequency of driving force, respectively.

(b) ẍ + αẋ +ω2
0x + βx3 = f sinωt. This is a Duffing nonlinear oscillator with cubic restoring force. α is the

strength of damping, ω0 is the natural frequency and β is the strength of the nonlinear restoring force.

(c) ẍ − µ
(
1 − x2

)
ẋ + βx = f cosωt, µ > 0. This is a van der Pol nonlinear forced oscillator.

(d) ẍ − µ
(
1 − x2

)
ẋ + ω2

0x + βx3 = f cosωx. This is a Duffing-van der Pol nonlinear forced oscillator.
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Continuous Dynamical Systems

1.2 Flows

The time-evolutionary process may be described as a flow of a vector field.

Generally, flow is frequently used for discussing the dynamics as a whole rather than the evolution of a

system at a particular point. The solution x(t) of a system ẋ = f (x) which satisfies x (t0) = x0 gives the past

(t < t0) and future (t > t0) evolutions of the system. Mathematically, the flow is defined byφt(x) : U→ Rn

where φt(x) = φ(t, x) is a smooth vector function of x ∈ U ⊆ Rn and t ∈ I ⊆ R satisfying the equation

d
dt
φt(x) = f

(
φt(x)

)
for all t such that the solution through x exists and φ(0, x) = x. The flow φt(x) satisfies the following

properties:

(a) φo = Id,

(b) φt+s = φt ◦ φs.

Some flows may also satisfy the property (c)

φ(t + s, x) = φ(t, φ(s, x)) = φ(s, φ(t, x)) = φ(s + t, x).

Flows in R : Consider a one-dimensional autonomous system represented by ẋ = f (x), x ∈ R. We

can imagine that a fluid is flowing along the real line with local velocity f (x). This imaginary fluid is

called the phase fluid and the real line is called the phase line.

For solution of the system ẋ = f (x) starting from an arbitrary initial position x0, we place an imaginary

particle, called a phase point, at x0 and watch how it moves along with the flow in phase line in varying

time t. As time goes on, the phase point (x, t) in the one-dimensional system ẋ = f (x) with x(0) = x0

moves along the x-axis according to some function φ (t, x0). The function φ (t, x0) is called the trajectory

for a given initial state x0, and the set
{
φ (t, x0) | t ∈ I ⊆ R

}
is the orbit of x0 ∈ R. The set of all qualitative

trajectories of the system is called phase portrait.

Flows inR2 : Consider a two-dimensional system represented by the following equations ẋ = f (x, y), ẏ =

1(x, y), (x, y) ∈ R2. An imaginary fluid particle flows in the planeR2, known as phase plane of the system.

The succession of states given parametrically by x = x(t), y = y(t) trace out a curve through some initial

point P
(
x (t0) , y (t0)

)
is called a phase path.

The set
{
φ (t, x0) | t ∈ I ⊆ R

}
is the orbit of x inR2. There are an infinite number of trajectories that would

fill the phase plane when they are plotted. But the qualitative behavior can be determined by plotting a

few trajectories with different initial conditions. The phase portrait displays how the qualitative behavior

of a system is changing as x and y varies with time t. An orbit is called periodic if x(t + p) = x(t) for some

p > 0, for all t. The smallest integer p for which the relation is satisfied is called the prime period of the
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Continuous Dynamical Systems

orbit. Flows in R cannot have oscillatory or closed path.

Flows inRn : Let us now define an autonomous system representing n ordinary differential equations

as
ẋ1 = f1 (x1, x2, . . . , xn)

ẋ2 = f2 (x1, x2, . . . , xn)
...

ẋn = fn (x1, x2, . . . , xn)


which can also be written in symbolic notation as ẋ = f (x), where x = (x1, x2, . . . , xn) and f =

(
f1, f2, . . . , fn

)
.

The solution of this system with the initial condition x(0) = x0 can be thought as a continuous curve in

the phase space Rn parameterized by time t ∈ I ⊆ R.

So the set of all states of the evolutionary process is represented by an n-valued vector field in Rn. The

solutions of the system with different initial conditions describe a family of phase curves in the phase

space, called the phase portrait of the system. The vector field f (x) is everywhere tangent to these curves

and their orientation is directed by the direction of the tangent vector of f (x).

1.3 Evolution

Consider a system ẋ = f (x), x ∈ Rn with initial conditions x (t0) = x0. Let E ⊂ Rn be an open set and

f ∈ C1(E). For x0 ∈ E, let φ (t, x0) be a solution of the above system on the maximum interval of existence

I (x0) ⊂ R. The mapping φt : Rn
→ Rn defined by φt(x0) = φ(t, x0) is known as evolution operator of the

system.

The linear flow for the system ẋ = Ax with x (t0) = x0, is defined by φt : Rn
→ Rn and φt = eAt,

the exponential matrix. The mappings φt for both linear and nonlinear systems satisfy the following

properties:

(i) φ0(x) = x

(ii) φs

(
φt(x)

)
= φs+t(x),∀s, t ∈ R

(iii) φt

(
φ−t(x)

)
= φ−t

(
φt(x)

)
= x,∀t ∈ R

In general a dynamical system may be viewed as group of nonlinear / linear operators evolving as{
φt(x), t ∈ R, x ∈ Rn

}
. The following dynamical group properties hold good:

(i) φtφs ∈
{
φt(x), t ∈ R, x ∈ Rn

}
(Closure property)

(ii) φt

(
φsφr

)
= (φtφs)φr (Associative property)

(iii) φ0(x) = x, φ0 being the Identity operator.

(iv) φtφ−t = φ−tφt = φ0, where φ−t is the Inverse of φt.

For some cases the flow satisfies the commutative property φtφs = φsφt.
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Continuous Dynamical Systems

1.4 Fixed Points of a System

The notion of fixed point is important in analyzing the local behavior of a system. The fixed point is

nothing but a constant or equilibrium or invariant solution of a system. A point is a fixed point of the flow

generated by an autonomous system ẋ = f (x), x ∈ Rn if and only if φ(t, x) = x for all t ∈ R. Consequently

in continuous system, this gives ẋ = 0 ⇒ f (x) = 0. For nonautonomous systems fixed point can be

defined for a fixed time interval. Ã fixed point is also known as a critical point or an equilibrium point

or a stationary point. This point is also called stagnation point with respect to the flow φt in Rn. Flows

on line may have no fixed points, only one fixed point, finite number of fixed points, and infinite number

of fixed points. For example, the flow ẋ = 5 (no fixed points), ẋ = x (only one fixed point), ẋ = x2
− 1 (two

fixed points), and ẋ = sin x (infinite number of fixed points).

1.5 Linear Stability Analysis

A fixed point, say x0 is said to be stable if for a given ε > 0, there exists a δ > 0 depending upon ε such

that for all t ≥ t0, ‖x(t) − x0(t)‖ < ε, whenever ‖x (t0) − x0 (t0)‖ < δ, where ‖ · ‖ : Rn
→ R denotes the norm

of a vector in Rn. Otherwise, the fixed point is called unstable. In linear stability analysis the quadratic

and higher order terms in the Taylor series expansion about a fixed point x∗ of a system ẋ = f (x), x ∈ R

are neglected due to the smallness of the terms. Consider a small perturbation quantity ξ(t), away from

the fixed point x∗, such that x(t) = x∗ + ξ(t). We see whether the perturbation grows or decays as time

goes on. So we get the perturbation equation as

ξ̇ = ẋ = f (x) = f (x∗ + ξ) .

Taylor series expansion of f (x∗ + ξ) gives

˙̄ξ = f (x∗) + ξ f ′ (x∗) +
ξ2

2
f ′′ (x∗) + · · ·

According to linear stability analysis, we get

ξ̇ = ξ f ′ (x∗)
[
∵ f (x∗) = 0

]
Assuming f ′ (x∗) , 0, the perturbation ξ(t) grows exponentially if f ′ (x∗) > 0 and decays exponentially

if f ′ (x∗) < 0. Linear theory fails if f ′ (x∗) = 0 and then higher order derivatives must be considered in the

neighborhood of fixed point for stability analysis of the system.

Example 1.1 Find the evolution operator φt for the one-dimensional flow ẋ = −x2. Show that φt forms a

dynamical group. Is it a commutative group?
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Continuous Dynamical Systems

Solution The solutions of the given system are obtained as below:

ẋ =
dx
dt

= −x2
⇒

1
x

= t + A⇒ x(t) =
1

t + A

in any interval ofR that does not contain the point x = 0, where A is a constant. If we take starting point

x(0) = x0, then A = 1/x0 and so we get

x(t) =
x0

1 + x0t
, t , −1/x0.

The point x = 0 is not included in this solution. But it is the fixed point of the given system, because

ẋ = 0 ⇔ x = 0. Therefore, φt(0) = 0 for all t ∈ R. So the evolution operator of the system is given as

φt(x) = x
1+xt for all x ∈ R.

The evolution operator φt is not defined for all t ∈ R. For example, if t = −1/x, x , 0, then φt is

undefined. Thus we see that the interval in which φt is defined is completely dependent on x.

We shall now examine the group properties of the evolution operator φt below:

(i) φrφs ∈
{
φt(x), t ∈ R, x ∈ R

}
∀r, s ∈ R (Closure property)

Now,

φr(y) =
y

1 + yr
. Take y =

x
1 + xs

=
x/1 + sx
1 + x

1+x
=

x
1 + xs + xr

=
x

1 + x(s + r)

= φs+r ∈
{
φt(x), t ∈ R, x ∈ R

}
(ii) φt

(
φsφr

)
=

(
φtφs

)
φr (Associative property)

L.H.S. = φt

((
φsφr

)
(x)

)
= φt(y) =

y
1 + yt

=
z

1 + zs
=

x
1 + x(r + s)

, y = φs

(
φr(x)

)
(where y = φs(z), z = φr(x) =

x
1 + rx

)
∴ L.H.S =

x
1 + x(t + r + s)

= φr+r+s(x)

R.H.S. =
((
φtφs

)
φr(x)

)
Now,

φt(y) =
y

1 + yt
, y = φs(x) =

x
1 + sx

=
x

1 + x(t + s)
= φt+s(x)

φt+s

(
φr

)
(x) = φt+s(z) =

z
1 + z(t + s)

, z = φr(x) =
x

1 + rx

φt+s

(
φr

)
(x) =

x
1 + x(t + s + r)

= φt+s+r(x)
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Continuous Dynamical Systems

Hence, φt

(
φsφr

)
(x) =

(
φsφr

)
φt(x),∀x ∈ R.

(iii) φ0(x) = x
1+x.0 = x, φ0 is the identity operator.

φtφ−t(x) = φt(y) =
y

1 + ty
, y = φ−t(x) =

x
1 − tx

=
x

1 − tx + tx
= x = φ0(x)

(
φ−t is the inverse of φt

)
Hence the flow evolution operator forms a dynamical group.

(v) φtφs = φsφt

Now, (
φtφs

)
(x) = φt(y) =

y
1 + ty

, y = φs(x) =
x

1 + xs

=
x

1 + x(t + s)
= φt+s(x)

φsφt(x) = φs(z) =
z

1 + sz
, z = φt(x) =

x
1 + tx

=
x

1 + tx + sx
=

x
1 + (s + t)x

= φs+t(x)

So, φtφs = φsφt (Commutative property).

Thus, the evolution operator φt forms a commutative group.

Example 1.2 Using linear stability analysis determine the stability of the critical points for the following

systems

(i) ẋ = sin x, (ii) ẋ = x2

Solution (i) The given system has infinite numbers of critical points. The critical points are x∗n =

nπ,n = 0,±1,±2, . . .. When n is even, f ′
(
x∗n

)
= cos

(
x∗n

)
= cos(nπ) = (−1)n = 1 > 0. So, these critical points

are unstable. When n is odd, f ′
(
x∗n

)
= −1 < 0, and so these critical points are stable.

(ii) The critical point of the system is at x∗ = 0. Now, f ′ (x∗) = 0 and f ′′ (x∗) = 2 > 0. Hence, x∗ is

attracting when x < 0 and repelling when x > 0. Actually, the critical point is semi-stable in nature.

1.6 Analysis of One-Dimensional Flows

As we know qualitative approach is the combination of analysis and geometry and is a powerful tool for

analyzing solution behaviors of a system qualitatively. By drawing trajectories in phase line/plane/space,

the behaviors of phase points may be found easily. In qualitative analysis we mainly look for the following

solution behaviors:

(i) Local stabilities of fixed points for a system;

(ii) Analyzing the existence of periodic/quasi-periodic solutions, limit cycle, relaxation oscillation,

hysteresis, etc.;

(iii) Local and asymptotic solution behaviors of a system;
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Continuous Dynamical Systems

(iv) Topological features of flows such as bifurcations, catastrophe, topological equivalence, transi-

tiveness, etc.

We shall now analyze a simple one-dimensional system as follows.

Consider a one-dimensional system represented as ẋ(t) = sin x with the initial condition x(t = 0) =

x(0) = x0. The characteristic features of the system are (i) it is a one-dimensional system, (ii) nonlinear

system (iii) autonomous system, and (iv) its closed-form solution (analytical solution) exists. This is a

one-dimensional flow and we analyze the system on the basis of flow. The analytical solution of the

system is obtained easily

dx
dt

= sin x⇒ dt = cosec(x)dx

Integrating, we get

t =

∫
cosec(x)dx

= − log | cosec(x) + cot(x)| + c

where c is an integrating constant. Using the initial condition x(0) = x0, we get the integrating

constant c as

c = log |cosec (x0) + cot (x0)| .

Thus the solution of the system is given as

t = log
∣∣∣∣∣cosec (x0) + cot (x0)

cosec(x) + cot(x)

∣∣∣∣∣
From this closed-form solution, the behaviors of solutions for any initial conditions are difficult to

analyse. Moreover, the asymptotic values of the system are

also difficult to obtain. The qualitative approach can give better dynamical behavior about this simple

system.

We consider t as time, x as the position of an imaginary particle moving along the flow in real line

and ẋ as the velocity of that particle. The differential equation ẋ = sin x represents a vector field on the

line. It gives the velocity vector ẋ at each position x. The arrows point to the right when ẋ > 0 and to the

left when ẋ < 0. We shall draw the graph of sin x versus x in xẋ - plane which gives the flow in the x-axis

(see Fig. 1.1).

We may imagine that fluid is flowing steadily along the x-axis with a velocity ẋ which varies from

place to place, according to equation ẋ = sin x. At points ẋ = 0, there is no flow and such points are called

equilibrium points (fixed points). According to the definition of fixed point, the equilibrium points of this

system are obtained as sin x = 0 ⇒ x = nπ(n = 0,±1,±2, . . .). This simple looking autonomous system
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Continuous Dynamical Systems

has infinite numbers of equilibrium points in R. We can see that there are two kinds of equilibrium

points. The equilibrium point where the flow is toward the point is called sink or attractor (neighboring

trajectories approach asymptotically to the point as t→ ∞ ). On the other hand, when the flow is away

from the point, the point is called source or repellor (neighboring trajectories move away from the point

as t→∞ ). From the above figure the solid circles represent the sinks that are stable equilibrium points

and the open circles are the sources, which are unstable equilibrium points. The names are given because

the sinks and sources are common in fluid flow problems. From the geometric approach one can get

local stability behavior of the equilibrium points of the system easily and is valid for all time. We shall

now re-look the analytical solution of the system. The analytical solution can be expressed as

t = log | tan(x/2)| + c⇒ x(t) = 2 tan−1
(
Aet

)
where A is an integrating constant.

Figure 1.1: Graphical representation of flow generated by sin(x)

Let the initial condition be x0 = x(0) = π/4. Then from the above solution we obtain

A = tan(π/8) = −1 +
√

2 = 1/(1 +
√

2)

So the solution is expressed as

x(t) = 2 tan−1

(
et

1 +
√

2

)
We see that the solution x(t)→ π and t→∞.

Without using analytical solution for this particular initial condition the same result can be found

by drawing the graph of x versus t. So the solution’s behavior at any initial condition can be obtained
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Continuous Dynamical Systems

easily by geometric approach. This simple one-dimensional system also has an interesting application.

For a slow motion of a spring immersed in a highly viscous fluid such as grease or viscoelastic fluid

(the combined effects of fluid viscosity and elasticity for example, synovial fluid in the joints of human

bones), the viscous damping force is very strong compared to the inertia of motion. So one can neglect

acceleration term (that is, inertia) and the spring-mass system may be governed by the equation αẋ =

sin x, whereα > 0 (string constant) is a real number and the dynamics can be obtained using this approach

for different values of α (see the book Strogatz [5] for more physical examples and explanations).

We shall discuss a few worked out examples presented below.

Example 1.5 With the help of flow concept discuss the local stability of the fixed points of ẋ = f (x) =(
x2
− 1

)
.

Solution The fixed points of the given autonomous system are given by setting f (x) = 0. This gives

x = ±1. So the fixed points of the system are 1 and -1 . For the local stability of the system about these

fixed points we plot the graph of the function f (x) and then sketch the vector field. The flow is to the

right direction, indicated by the symbol ’→ ’, where the velocity ẋ > 0, that is, where
(
x2
− 1

)
> 0 and

to the left direction, indicated by the symbol ’← ’, where ẋ < 0, that is,
(
x2
− 1

)
< 0. We also use solid

circles to represent stable fixed points and open circles for unstable fixed points.

In Fig.1.2 the arrows indicate the flow of the system. From the figure, we see that the fixed point

x = 1 is unstable, since it acts as a source point and the fixed point x = −1 is stable, since it acts as a sink

point.

Example 1.6 Discuss the stability character of the fixed points for the system ẋ = x(1 − x) using the

concept of flow.

Figure 1.2: Graphical representation of f (x) =
(
x2
− 1

)

Solution Here f (x) = x(1 − x). Then for the fixed points, we have
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Continuous Dynamical Systems

f (x) = 0⇒ x(1 − x) = 0⇒ x = 0, 1

Thus the fixed points are 0 and 1 . To discuss the stability of these fixed points we plot the system ( x

versus ẋ) and then sketch the vector field. The flow is to the right direction, indicated by the symbol ’→

’, when the velocity ẋ > 0, and to the left direction, indicated by the symbol ’← ’, when ẋ < 0. We also

use solid circle to represent stable fixed point and open circle to represent unstable fixed point.

From Fig. 1.3 we see that the fixed point x = 1 is stable whereas the fixed point x = 0 is unstable.

Example Find the fixed points and analyze the local stability of the following systems (i) ẋ = x + x3

(ii) ẋ = x − x3 (iii) ẋ = −x − x3

Solution (i) Here f (x) = x + x3. Then for fixed points f (x) = 0 ⇒ x + x3 = 0 ⇒ x = 0, as x ∈ R. So, 0

is the only fixed point of the system. We now see that when x > 0, ẋ > 0 and when x < 0, ẋ < 0. Hence

the fixed point x = 0 is unstable. The graphical representation of the flow generated by the system is

displayed in Fig.1.4.

(ii) Here f (x) = x − x3. Then f (x) = 0 ⇒ x − x3 = 0 ⇒ x = 0, 1,−1. Therefore, the fixed points of the

system are 0, 1,−1. We now see that

(a) when x < −1, then ẋ > 0

(b) when −1 < x < 0, ẋ < 0

(c) when 0 < x < 1, ẋ > 0

(d) when x > 1, then ẋ < 0.

This shows that the fixed points 1 and -1 are stable whereas the fixed point 0 is unstable (Fig. 1.5).

Figure 1.3: Pictorial representation of f (x) = x(1 − x)

(iii) Here f (x) = −x − x3. Then f (x) = 0 ⇒ −x − x3 = 0 ⇒ x = 0, as x ∈ R. So x = 0 is the only fixed

point of the system. We now see that ẋ > 0 when x < 0 and ẋ < 0 when x > 0. This shows that the fixed

point x = 0 is stable. The graphical representation of the flow generated by the system is displayed in

14
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Figure 1.4: Graphical representation of f (x) =
(
x + x3

)

Fig. 1.6.

Example 1.8 Determine the equilibrium points and sketch the phase diagram in the neighborhood of

the equilibrium points for the system represented as ẋ + x sgn(x) = 0.

Solution Given system is ẋ + x sgn(x) = 0, that is, ẋ = −x sgn(x), where the function sgn(x) is defined

as

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

For equilibrium points, we have

ẋ = 0⇒ x sgn x = 0⇒ x = 0

15
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Figure 1.5: raphical representation of the flow generated by
(
x − x3

)

Figure 1.6: Graphical representation of f (x) =
(
−x − x3

)
versus x

This shows that the system has only one equilibrium point at x = 0. In flow analysis we see that the

velocity ẋ < 0 for all x , 0. The flow is to the right direction, when ẋ > 0, in the negative x-axis and to

the left direction, when ẋ < 0, in the positive x-axis. This is shown in the phase diagram depicted in Fig.

1.7, which shows that the fixed point origin is semi-stable.

1.7 Conservative and Dissipative Dynamical Systems

The dichotomy of dynamical systems in conservative versus dissipative is very important. They have

some fundamental properties. Particularly, conservative systems are the integral part of Hamiltonian

mechanics. We give here only the formal definitions of conservative and dissipative systems. Consider

an autonomous system represented as

16
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ẋ = f (x), x ∈ Rn. (1.2)

Figure 1.7: Graphical representation of the flow ẋ = −x sgn x

The conservative and dissipative systems are defined with respect to the divergence of the corre-

sponding vector field, which in turn refers to the conservation of volume or area in their state space or

phase plane, respectively as follows:

A system is said to be conservative if the divergence of its vector field is zero. On the other hand, it

is said to be dissipative if its vector field has negative divergence. The phase volume in a conservative

system is constant under the flow while for a dissipative system the phase volume occupied by the

system is gradually decreased as the time t increases and shrinks to zero as t→∞. When divergence of

vector field is positive, the phase volume is gradually expanding. We shall discuss it in a later chapter.

We state a lemma below which gives the change of volume in a phase space for an autonomous system.

Sometimes, it is useful to find the evolution of volume in the phase space of a system ẋ = f (x), x ∈ Rn.

The system generates a flow φ(t, x). We give Liouville’s theorem which describes the time evolution of

volume under the flow φ(t, x). Before this we now give the following lemma.

Lemma Consider an autonomous vector field ẋ = f (x), x ∈ Rn and generates a flow φt(x). Let D0 be

a domain inRn and φt (D0) be its evolution under the flow. If V(t) is the volume of Dt, then the time rate

of change of volume is given as dv
dt

∣∣∣
t=0

=
∫

D0
∇ · f dx.

Proof The volume V(t) can be expressed in the following form using the definition of the Jacobian of

a transformation as

V(t) =

∫
D0

∣∣∣∣∣∣∂φ(t, x)
∂x

∣∣∣∣∣∣ dx

17
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Expanding Taylor series of φ(t, x) in the neighborhood of t = 0, we get

φ(t, x) = x + f (x)t + O
(
t2
)

⇒
∂φ

∂x
= I +

∂ f
∂x

t + O
(
t2
)

Here I is the n × n identity matrix and∣∣∣∣∣∣∂φ∂x

∣∣∣∣∣∣ =

∣∣∣∣∣I +
∂ f
∂x

t
∣∣∣∣∣ + O

(
t2
)

= 1 + trace
(
∂ f
∂x

)
t + O

(
t2
)

[Using expansion of the determinant]

Now, trace
(
∂ f
∂x

)
= ∇ · f , so we have

V(t) = V(0) +

∫
D0

t∇ · f dx + O
(
t2
)

This gives dv
dt

∣∣∣
t=0

=
∫

D0
∇ · f dx.

Theorem (Liouville’s Theorem) Suppose ∇ · f = 0 for a vector field f . Then for any region D0 ⊆ Rn,

the volume V(t) generated by the flow φ(t, x) is V(t) = V(0),V(0) being the volume of D0.

Proof Suppose the divergence of the vector field f is everywhere constant, that is, ∇ · f = c. For

arbitrary time t0 the evolution equation for the volume is given as V̇ = cV. This gives V(t) = V(0)ect.

When the vector field is divergence free, that is, c = 0, we get the result V̇ = 0⇒ V(t) = V(0) = constant.

Thus we can say that the flow generated by a time independent system is volume preserving.

Examples of conservative and dissipative systems are presented below.

(a) Consider a linear and undamped pendulum represented as ẍ + x = 0. This is an example of a

conservative system. Setting ẋ = y, we can write it as a system of equations

ẋ = y

ẏ = −x


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The system may also be written in the compact form ẋ = f x), where f (x) =
( y
−x

)
. The divergence

of the vector field f is given by ∇ · f = ∂
∂x (y) + ∂

∂y (−x) = 0. According to the definition, the system is

conservative and the area occupied in the xy-phase plane is constant.

(b) The damped pendulum governed by ẍ+αẋ+βx = 0, α, β > 0 is an example of a dissipative system.

Setting ẋ = y, we can write the system as

ẋ = y

ẏ = −xy − βx


The vector field is then expressed as f (x) =

( y
−αy−βx

)
. Now, ~∇ · f = ∂

∂x (y) + ∂
∂y (−αy− βx) = −α < 0, since

α > 0.

This shows that the divergence of the vector field is negative.

So the system is dissipative in nature and the area in the phase plane is decreasing as time goes

on. This is the simplest linear oscillator with linear damping. It describes a spring-mass system with a

damper in parallel. The spring force is proportional to the extension x of the spring and the damping or

frictional force is proportional to the velocity ẋ . The two constants α and β are related to the stiffness

of the spring and the degrees of friction in the damper, respectively. According to the above lemma, the

change in phase area is given by

A(t) = cA(0)e−α, α > 0 as t→∞, c being a constant.

Example Find the phase volume element for the systems (i) ẋ = −x, (ii) ẋ = ax − bxy, ẏ = bxy − cy where

x, y ≥ 0 and a, b, c are positive constants.

Solution (i) The flow of the system ẋ = −x is attracted toward the point x = 0. The time rate of change

of volume element V(t) under the flow is given as

dV
dt

∣∣∣∣∣
r=0

= −

∫
D(0)

dx = −V(0)

or, V(t) = V(0)e−t
→ 0 as t→∞.

Hence the phase volume element V(t) shrinks exponentially.

(ii) The given system is a Lotka-Volterra predator-prey population model. The rate of change in

phase area A(t) is given as
dV
dt

= −

∫
~∇ : f dx dy

= −

∫
(a − c − by + bx)dx dy

This shows that a phase area periodically shrinks and expands.
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1.8 Some Definitions

In this section we give some important preliminary definitions relating to flow of a system. The defini-

tions given here are elaborately discussed in the later chapters for higher dimensional systems.

Invariant set A set D ⊂ Rn is said to be an invariant set under the flowφt if for any point p ∈ D, φt(p) ∈

D for all t ∈ R. The set D is said to be positively invariant if φr(p) ∈ D for t ≥ 0. Trajectories starting in an

invariant set remain in the set for all times. An interval is called trapping if it is mapped into itself and is

said to be invariant if it is mapped exactly onto itself. Moreover, if a bounded interval is trapping, then

all of its trajectories are trapped inside and must converge to a closed, invariant, and bounded limit set.

Basically these limit sets are the attractors of a system. So the periodic orbits are examples of invariant

sets. We now define two limiting topological concepts which are relevant to the orbits of dynamical

systems.

Limit points ( ω - and α-limit points)

The asymptotic behavior of a trajectory may be related with limit points/sets or cycles and are termed

as ω - and α-limit points/sets or cycles. We now give the definitions.

A point p ∈ Rn is called an ω-(resp. a α-) limit point if there exists a sequence {ti} with ti → ∞ (resp.

ti → −∞ ) such that φ (ti, x)→ p as i→∞. The ω-limit set(cycle) is denoted by Λ(x) and is defined as

Λ(x) =
{
x ∈ Rn

| ∃ {ti} with ti →∞ and φ (ti, x)→ p as i→∞
}
.

Similarly, the α-limit set (cycle), µ(x), is defined as

µ(x) =
{
x ∈ Rn

| ∃ {ti} with ti → −∞ and φ (ti, x)→ p as i→∞
}
.

For example, consider a flow φ(t, x) on R2 generated by the system ṙ = cr(1 − r), θ̇ = 1, c being a

positive constant. For x , 0, let p be any point of the closed orbit C and take {ti}
∞

i=1 to be the sequence of

t > 0. The trajectory through x crosses the radial line through p. So, ti →∞ as i→∞ and

φ (ti, x) → p as i → ∞. If x lies in the closed orbit C, then φ (ti, x) = p for each i. Hence every point of C

is a ω-limit point of x and so Λ(x) = C for every x , 0. When |x| ≤ 1, the sequence {ti}
∞

i=1 with t < 0 gives

the α-limit set µ(x) =

 {0} for |x| < 1

closed orbit for |x| = 1
.

When |x| > 1, there is no sequence {ti}
∞

i=1, with ti →∞ as i→∞, such that φ (ti, x) exists as i→∞. So,

µ(x) is empty when |x| > 1. The closed orbit C is called a limit cycle of the system.

The trajectory of a system through a point x is the set γ(x) =
⋃

t∈R φ(t, x) and the corresponding

positive semi-trajectory γ+(x) and negative semi-trajectory γ−(x) are defined as follows:

γ+(x) =
⋃
t≥0

φ(t, x) and γ−(x) =
⋃
t≤0

φ(t, x).
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Attracting set A closed invariant set D ⊂ Rn for a flow φr is said to be an attracting set if there exists

some neighborhood U in D such that ∀t ≥ 0, φ(t,U) ⊂ U and
⋂

t>0 φ(t,U) = D.

Absorbing set A positive invariant compact subset B ⊆ Rn is said to be an absorbing set if there exists

a bounded subset C of Rn with C ⊃ B such that tC > 0⇒ φ(t,C) ⊂ B∀t ≥ tC (see the book by Wiggins [7]

for details).

Trapping zone An open set U in an invariant set D ⊂ Rn in an attracting set for a flow generated by

a system is called a trapping zone. Let a set A be closed and invariant. The set A is said to be stable if

and only if every neighborhood of A contains a neighborhood U of A which is trapping.

Basin of attraction The domain (called as basin of attraction) of an attracting set D is defined as⋃
t≤0 φ(t,U) where U is any open set in D ⊂ Rn.

Consider the one-dimensional system ẋ = −x4 sin(π/x). It has countably infinite set of fixed points at

x∗ = 0,± 1
n ,n = 1, 2, 3, . . .. Now,

f (x) = −x4 sin(π/x)⇒ f ′(x) = −4x3 sin(π/x) + πx2 cos(π/x)

⇒ f ′ (x∗)
∣∣∣
x−± 1

n
=
π

n2 cos(nπ) =
π

n2 (−1)n.

The fixed point x∗ = 0 is neither attracting nor repelling. The interval [−1, 1] is an attracting set of the

given system. The fixed points x∗ = ± 1
2n ,n = 1, 2, . . . are repelling while the fixed points x∗ = ± 1

(2π−1) ,n =

1, 2, . . . are attracting.
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