METHODES DIRECTES DE RESOLUTION

DE SYSTEMES D'EQUATIONS LINEAIRES

L'application de loin la plus fréquente des matrices est la représentation et la résolution de systèmes d'équations linéaires.

Liens entre système d'équations linéaires et matrice

Soit le système à trois équations et trois inconnus :

$$\begin{cases} a_{11} & x_1 + a_{12} & x_2 + a_{13} & x_3 = b_1 \\ a_{21} & x_1 + a_{22} & x_2 + a_{23} & x_3 = b_2 \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b_3 \end{cases}$$

On peut représenter ce système sous forme d'une équation matricielle comme suit :

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$A \qquad x = b$$

Liens entre système d'équations linéaires et matrice

- La matrice $A \in M_n(\mathbb{K})$ est dite : matrice du système,
- b est un vecteur de \mathbb{K}^n dit: second membre du système
- Le vecteur $x \in \mathbb{K}^n$ est le vecteur des inconnues du système.

Exemple

$$\begin{cases} 5x_1 + 4x_2 + 7x_3 = 10 \\ 2x_1 + 4x_2 + 8x_3 = 20 \\ 3x_1 + 6x_2 + 9x_3 = 30 \end{cases} \equiv \begin{bmatrix} 5 & 4 & 7 \\ 2 & 4 & 8 \\ 3 & 6 & 9 \end{bmatrix} X = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

OBJECTIF:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = ????$$

$$\underline{\text{Matrice du système }} A = \begin{bmatrix} 5 & 4 & 7 \\ 2 & 4 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

Inconnus du système
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Second membre du système
$$b = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

Résolution de système d'équations linéaires

$$\begin{cases} 5x_1 + 4x_2 + 7x_3 = 10 \\ 2x_1 + 4x_2 + 8x_3 = 20 \\ 3x_1 + 6x_2 + 9x_3 = 30 \end{cases} \equiv \begin{bmatrix} 5 & 4 & 7 \\ 2 & 4 & 8 \\ 3 & 6 & 9 \end{bmatrix} X = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

SOLUTION:

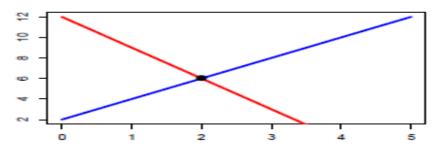
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = ????$$

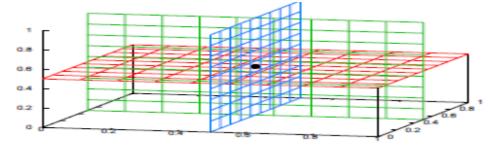
$$X = A^{-1} \cdot b$$

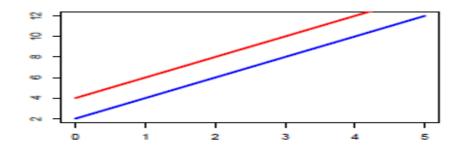
$$X = \operatorname{inv}(A) * b$$

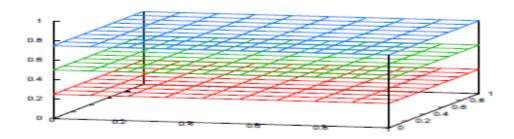
$$X = \begin{bmatrix} 0.3333 & -0.1667 & -0.1111 \\ -0.1667 & -0.6667 & 0.7222 \\ 0.0000 & 0.5000 & -0.3333 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} = \begin{bmatrix} -3.33333 \\ 6.6666 \\ 0 \end{bmatrix}$$

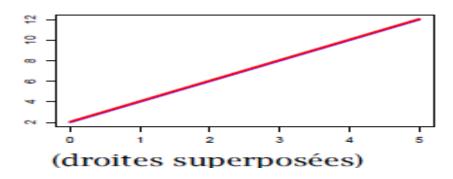
Résolution de système d'équations linéaires

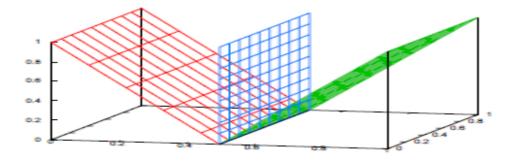












Résolution de système d'équations linéaires

det(A)≠0:

La matrice est inversible, ce qui signifie que le système a une solution unique.

det(A)=0:

- Soit il n'a aucune solution.
- Soit le système accepte une infinité de solutions.

Soit le système d'équation suivant à résoudre :

$$\begin{cases} a_{11}x_1 & + & \mathbf{0} & + & \mathbf{0} & + & \cdots & \mathbf{0} & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \cdots & + & \cdots & \mathbf{0} & b_2 \\ a_{31}x_1 & + & a_{32}x_2 & + & a_{33}x_3 & + & \cdots & \mathbf{0} & = b_3 \\ \vdots & + & \vdots & + & \vdots & + & \ddots & \vdots & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & \cdots & + & \cdots & a_{nn}x_n & b_n \end{cases}$$

Exemple: un système à 4 inconnus

$$\begin{cases}
-3x_1 & = 10 \\
2x_1 & + 4x_2 & = -4 \\
x_1 & - 3x_2 & + 2x_3 & = 8 \\
-4x_1 & + 5x_2 & + 6x_3 & + x_4 & = -3
\end{cases}$$

$$x_1 = \frac{-10}{3}$$
 $x_2 = \frac{1}{4} \left(-4 - 2x_1 \right) = \frac{1}{4} \left(-4 + \frac{20}{3} \right) = \frac{2}{3}$

$$x_3 = \frac{1}{2} (8 - (1.x_1 - 3.x_2)) = \frac{1}{2} (8 - (1.\frac{-10}{3} - 3.\frac{2}{3})) = \frac{20}{3}$$

$$x_4 = \frac{1}{1} \left(-3 - \left(\frac{40}{3} + \frac{10}{3} + 6x_3 \right) = \frac{-179}{3} \right)$$

$$\begin{cases} a_{11} & x_1 + a_{12} & x_2 + a_{13} & x_3 = b_1 \\ a_{21} & x_1 + a_{22} & x_2 + a_{23} & x_3 = b_2 \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b_3 \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b_4 \end{cases}$$

via matrice triangulaire inférieure

$$x_1 = \frac{b_1}{a_{11}}$$

$$x_2 = \frac{1}{a_{22}} (b_2 - a_{21}x_1)$$

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$x_3 = \frac{1}{a_{33}} (b_3 - (a_{31}x_1 + a_{32}x_2))$$

$$x_3 = \frac{1}{a_{33}} \left(b_3 - (a_{31}x_1 + a_{32}x_2) \right) \quad x_n = \frac{b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1}}{a_{nn}}$$

$$x_4 = \frac{1}{a_{44}} \left(b_4 - \left(a_{41} x_1 + a_{42} x_2 + a_{43} x_3 \right) \right)$$

Méthode de descente

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} - \text{Calculer x1}$$

$$- \text{Calculer les } x_i \text{ (les lignes } i = 2:n)$$

$$- \text{Parcours des j colonnes:}$$

•
$$i < j$$
, $a_{ij} = 0 \rightarrow$ /

- $i \ge j$ utilisé pour calculer x_i
 - $\circ i = j \rightarrow a_{ii}$ dénominateur de

$$0 \ i > j \rightarrow \sum_{j=1}^{i-1} a_{ij} . x_j$$

$$\circ b_i - \Sigma$$

$$x_1 = \frac{b_1}{a_{11}}$$
 $i \ge j$ utilisé pour calcule $i = j \rightarrow a_{ii}$ dénominat $i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j \right)$, $i = 2, ..., n$. $i \ge j$ utilisé pour calcule $i \ge j$ dénominat l'expression $i \ge j \rightarrow \sum_{j=1}^{i-1} a_{ij} x_j$

Soit le système suivant à résoudre :

$$\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n-1}x_{n-1} & + & a_{1n}x_n & b_1 \\ 0 & + & a_{22}x_2 & + & \dots & + & a_{2n-1}x_{n-1} & + & a_{2n}x_n & b_2 \\ 0 & + & 0 & + & \dots & + & a_{3n-1}x_{n-1} & + & a_{3n}x_n & = b_3 \\ \vdots & + & \vdots & + & \ddots & + & \vdots & + & \vdots & = b_3 \\ \vdots & + & 0 & + & 0 & + & a_{n-1n-1}x_{n-1} & + & a_{n-1n}x_n & b_{n-1} \\ 0 & + & 0 & + & 0 & + & 0 & + & a_{nn}x_n & b_n \end{cases}$$

Exemple: un système à 4 inconnus

$$\begin{cases} 3x_1 + 5x_2 - 6x_3 + x_4 = 10 \\ -4x_2 + 2x_3 - 3x_4 = -4 \\ 2x_3 + 0x_4 = 8 \\ 3x_4 = -3 \end{cases}$$

Résolution de système triangulaire supérieure Exemple

$$\begin{cases} 3x_1 + 5x_2 - 6x_3 + x_4 = 10 \\ -4x_2 + 2x_3 - 3x_4 = -4 \\ 2x_3 + 0x_4 = 8 \\ 3x_4 = -3 \end{cases}$$

$$\begin{cases} a_{11} & x_1 + a_{12} & x_2 + a_{13} & x_3 = b_1 \\ a_{21} & x_1 + a_{22} & x_2 + a_{23} & x_3 = b_2 \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b_3 \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b_4 \end{cases}$$

$$x_{4} = \frac{b_{4}}{a_{44}}$$

$$x_{3} = \frac{1}{a_{33}} (b_{3} - a_{34}x_{4})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - (a_{23}x_{3} + a_{24}x_{4}))$$

$$x_{1} = \frac{1}{a_{11}} (b_{1} - (a_{12}x_{2} + a_{13}x_{3} + a_{14}x_{4}))$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Résolution de système triangulaire supérieure Méthode de remontée

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} - Calculer xn$$
- Calculer les x_i ($i = (n-1): -1: 1$)
- Parcours des colonnes j:

•
$$i > j$$
, $a_{ij} = 0 \rightarrow$ /

- $i \le j$ utilisé pour calculer x_i
 - $\circ i = j \rightarrow a_{ii}$ dénominateur de

$$x_{n} = \frac{b_{n}}{a_{nn}}$$

$$0 \quad i = j \rightarrow a_{ii} \text{ denominated l'expression}$$

$$x_{i} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j=i+1}^{n} a_{ij} x_{j} \right), \quad i = n-1, \dots, 1, \quad 0 \quad i < j \rightarrow \sum_{j=i+1}^{n} a_{ij} x_{j}$$

$$0 \quad b_{i} - \sum_{j=i+1}^{n} a_{ij} x_{j}$$