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CHAPTER 1

LINEAR SYSTEMS

exercise 7

Find the eigenvalues and eigenvectors of the matrix A and show that B = P"'AP is a diagonal matrix.
Solve the linear system y = By and then solve x = Ax using the above corollary. And then sketch the

phase portraits in both the x plane and y plane.

3 1]
() A =

13

[ 1 3]
(b) A =

ER

=t 1]
(©) A= .

1 -1

solution

(a) Al = 2/ AZ = 4/ 01 = (1/ _1)T/ Vy = (1/ 1)T/P =

20
0 4

and B=P1AP =

621‘

y(t) =
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Figure 1.1: Phase portrait
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Figure 1.2: Phase portrait
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exercise 8

2. Find the eigenvalues and eigenvectors for the matrix A, solve the linear system x = Ax, determine

the stable and unstable subspaces for the linear system, and sketch the phase portrait for

1 0 O
x=|1 2 0 |x
1 0 -1

solution

Al =1, /\2 =2, /\3 =-1,v = (2/ -2, 1)Tr V2 = (0/ 1, O)T/ V3 = (0/ 0, 1)T

et et 0 0
y(t) = e yo, x(t)=1/2 2(€2t - et) 222 0 |xo,
et et —et 0 2t

E° = Span {v3}, E" = Span {vy, v»}.

exercise 9

Write the following linear differential equations with constant coefficients in the form of the linear system
and solve:

(@f+x—-2x=0

b)i+x=0

()X —2k—x+2x=0

Hint: Let x; = x, x, = %1, etc.

solution
x = Ax
i
(@) A=
2 -1
0 1]
(b) A =
-1 0
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010
(A= 0 0 1
-2 1 2

exercise 10

solve the initial value problem

x = Ax
x(0) = xo

(a) with A given by 1 (a) above and xo = (1,2) (b) with A given in problem 2 above and xp = (1,2,3)".

solution

(@) x(t) = 1/2 (3e41 — e, 36t + ezl)
(b) x(t) =1/2 (26’, 6e? —2¢t, et + 56_1).

exercise 11

Let the n X n matrix A have real, distinct eigenvalues. Find conditions on the eigenvalues that are

necessary and sufficient for lim;_,. x(f) = 0 where x(t) is any solution of x = Ax.

solution

lim; o x(t) =0iff A; <Oforj=1,2,3,--- ,n.

exercise 12

Let the n X n matrix A have real, distinct eigenvalues. Let ¢ (t,xo) be the solution of the initial value

problem
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Show that for each fixed t € R,
lim ¢ (t,y0) = ¢ (t,%0) .
y0—>X()

This shows that the solution ¢ (¢, xo) is a continuous function of the initial condition.

solution
A1l

o (t,x0) =P P~lxp and limy .y, ¢ (£, y0) = ¢ (t, x0) since lim,,,», Yo = xo according to
ool

the definition of the limit.

exercise 13

Let the 2 X 2 matrix A have real, distinct eigenvalues A and u. Suppose that an eigenvector of A is (1,0)”
and an eigenvector of y is (—1,1)T. Sketch the phase portraits of x = Ax for the following cases:
@0<A<yu

b)0<p<A

(QA<pu<0

(dA<0<p

e u<0<A

HA=0,u>0.

solution

exercise 14
Compute the operator norm of the linear transformation defined by the following matrices:

2 0
(a) ]
0 -3
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() (b)
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Figure 1.3: Phase portrait

1 2
(b) [ ]
0 -1

10
51

Hint: In (c) maximize |Ax|* = 26x7 + 10x1x; + x5 subject to the constraint x + x3 = 1 and use the result

1/2
of exercise 2; or use the fact that [|A|| = [ Max eigenvalue of ATA] ! . Follow this same hint for (b).
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solution
(a) Al = maxy<1 |[Ax| = maxy,< v4x2 +9y? < 3x]; but for x = (0,1)7,|Ax| = | — 3| = 3; thus,
llAll = 3.

(b) the hint for (c), we can maximize |Ax|* = x2 + 4xy + 52 subject to the constraint x> + > = 1

to find x> = (2 + V2)/4 and 1> = 1 — x* which leads to ||JA|| = 2.4142136; or since AT = with

2 5
eigenvalues 3 + 2 V2, we have ||A|| = \/3 +2V2=1+ V2.

() We can either maximize |Ax|*> = 26x2 + 10xy + y? subject to the constraint x> + y* = 1; or find
26

5 1

the eigenvalues of AAT = [ which are (27 + V725)/2; in either case, ||A|| = 5.1925824 - - -.

exercise 15

Show that the operator norm of a linear transformation T on R” satisfies

T
71l = max T(0)| = sup -
=1 <o Xl

solution

[Tl
Ix]

2. By definition, ||T]| = maxy<1 [T(x)|. Thus, ||T|| > maxjy=1 [T (x)|. But max;=1 [T(x)| = sup,_, since if

|x| = a and we set y = x/a for x # 0, then |y| = |x|/a = 1 and since T is linear,

TGl _ Tl _ 2
SUP 20 ] = SUPxz0 o4 = sup#O‘T(g)

= max|y|=1 IT(y)|-.

Thus, ||T ) < sup, lTliT)l <sup,., IT‘Slc)I = max=1 |T(x)|. It follows that [[T|| = maxy=1 | T(x)| = sup,_, | T(x)|/[x].

exercise 16

Use the lemma in section 3.1 to show that if T is an invertible linear transformation then ||T|| > 0 and

1
—1 L
T2 7
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solution

If T is invertible, then there exists an inverse, T~!, such that TT~! = 1 and therefore HTT_lj = 1. By the
lemma in Section 3,1 = “TT_1“ <7l HT‘1||. This implies that ||T|| > 0, ‘T‘ln >0, and ||T‘1” > Hl_TH

exercise 17

If T is a linear transformation on R"” with ||[T — I|| < 1, prove that T is invertible and that the series

Y reo(I = T)F converges absolutely to T-!. Hint: Use the geometric series.

solution

Given T e L(R") with [I-TJ|| < 1.

Leta = ||l - T|| < 1 and the geometric series Yak converges.

Thus, by the Weierstrass M-Test, Y 1 (I — T)* converges absolutely to S € L (R"). By induction it follows
that T[I+(I-T)+---+ (I -T)]=1- (I -T)™.

Thus, TS = T Y20 = T = L2g T = T)F = limy e Lty T = T = limy oo [ = (I = T)™*!| = 1 since
lim,, e [IT = T||"*! = 0 which implies that lim,—,(I — T)"*! =0

since 0 < ”(I - T)”+1|| < |I(I=T)||**!. Therefore S = T~1.

exercise 18

Compute the exponentials of the following matrices:

2 0 1 2 10
(a) (b) (©)
0 -3 0 -1 5 1
5 -6 2 -1 0 1
(d) (e) ) :
3 -4 1 2 10
solution
e 0
. (a) et = .
0 e3
(b) The eigenvalues and eigenvectors of A are A; = 1,1, = =1,v; = (1,0)7, v, = (-1, 1)T; thus,
e 0 e e—e’! 1 -1
eA=p P! = where P = )
0 ¢! 0 e 0 1
1
(c) et =e by Corollary 4 .
5 1
(d) The eigenvalues and eigenvectors of A are A1 = 2,4, = -1,v1 = (2, 1T, v, = (1,1)7; thus,
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" e 0 2e2 —e1 271 —2¢? 2 1
et =P P! = where P = .
0 et e2—e1 2el-p 1 1
cos(l) —sin(1
(e) e’ = e? M M by Corollary 3.
sin(l)  cos(1)

) The eigenvalues and eigenvectors of A are A1 = 1,4, = =1,0v; = (1, 1)}, 0, = (-1,1)T; thus
e 0 cosh(1) sinh(1 1
eA =P P! = M) M with P =
0 et sinh(1) cosh(1) 1 1
it therefore follows that e® = 1(1+1/2! +1/4! +---)+ A(1+1/3! +1/5! +---) = I cosh(1) + A sinh(1). This

. Note that A%2 = 1 and from Definition

remark also applies to part (b).

exercise 19

(a) For each matrix in exercise 18 find the eigenvalues of e”.

(b) Show that if x is an eigenvector of A corresponding to the eigenvalue A, then x is also an
eigenvector of e corresponding to the eigenvalue e”.

(0 If A = Pdiag [A ]-] P71, use Corollary 1 to show that

det eA — etraceA

Also, using the results in the last paragraph of this section, show that this formula holds for any 2 x 2

matrix A.

solution

(a) The eigenvalues are €?,¢73;¢,¢7 ¢, ¢; €%, e7L; €2 = e2[cos(1) + isin(1)];e, e

(b)  If Ax = Ax, then ex = limy_, [1 FA+A22 4+ Ak/k!] x = limy_ [x X+ AZx/20 4+
)\kx/k!] =e'x.

(0 If A=Pdiag [)\ j] P71, then by Corollary 1, dete” = det {P diag [eAl] P‘l} = det{diag [eA*]} =
eAl . e/\k — etrees .

A
For a 2 x 2 matrix A with repeated eigenvalues A, we have det ¢! = det = eM = ptroceAr - and for

0 et

2 x 2 matrix A with complex eigenvalues, A = a + ib, we have

e"cosb —e'sinb
dete? = det

] = ¢% = ¢™°A (since the trace A = A; + A; = (a+ib) + (a —ib) = 2ain
e'sinb  ¢"cosb

10
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this case ).

exercise 20

Compute the exponentials of the following matrices:

1 00 1 00 2 00
@0 2 0 ®]o 21 @1 20
0 0 3 0 0 2 01 2

Hint: Write the matrices in (b) and (c) as a diagonal matrix S plus a matrix N. Show that S and N

commute and compute e as in part (a) and eV by using the definition.

solution

(a)
e = diag [e, 2, e3].

(b)

100 ooo|l [to0o0
0 21 ‘=I 0 0 1|+]0 2 0 |=N+SandNS =5N so that by Proposition 2,
0 0 2 0 00 | 0 0 2
1 00| [e 00
e"zdiag[c,ez,ez] 01 1|=]|0 & ¢ [|sinceN?=0impliesthateM =1+N.
001| [0 0 &
2 00 0 00 2 00
(o) 1 2 0|=[1 0 0[|+] 0 2 0 [=N+S5andNS = 5N so that by Proposition 2
01 2 010 0 0 2
1 00
et=eeN=¢ 1 1 0 [sinceN®=0impliesthate" =1+ N +N?/2.
12 1 1

exercise 21

Find 2 x 2 matrices A and B such that eA*B # ¢4eB.

solution

For A =

c 0 e 0
wehaveAB:O;&BA:B,eA’“B:{ ];&eAeB:[ }

10 e-1 1 11

11
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exercise 22

Let T be a linear operator on R” that leaves a subspace E C R" invariant; i.e., for all x € E, T(x) € E. Show

that eT also leaves E invariant.

solution

If T(x) € E for all x € E, then by induction T*(x) € E,--- , T*(x) € E

and therefore e (x) = limj_eo[1 + T + - - - + TF/k!]x = limj o0 [x +T(xX)+---+ T];(!x)] € E since any subspace

E of R" is complete and since xi = x + T(x) + - - - + TX(x)/k! is a Cauchy sequence in E.

exercise 22

Find the eigenvalues and eigenvectors of the matrix A and show that B = P"'AP is a diagonal matrix.
Solve the linear system y = By and then solve x = Ax using the above corollary. And then sketch the

phase portraits in both the x plane and y plane.

561 = —X1 — 3XZ
(1.1)
Xy = 2XQ

solution

Consider the linear system

5(1 = —X1 — 3XZ
J.Cz = ZXZ

-1 -3
0 2

The eigenvalues of A are A; = -1

1

which can be written in the form [1.1|with the matrix A =

1
and A, = 2. A pair of corresponding eigenvectors is given by v; = {

The matrix P and its inverse are then given by

1 -1
P = and P'=
0 1

11
01

The student should verify that

12
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PlAP =

-1 0
0 2
Then under the coordinate transformation y = P~'x, we obtain the uncoupled linear system

n=-1h
Y2 =212
which has the general solution y;(f) = cie™, y2(t) = c2¢*. The phase portrait for this system is given

in Figure 1 . And according to the above corollary, the general solution to the original linear system of

this example is given by

x(t) =P

where ¢ = x(0), or equivalently by

x1(t) = cre” + o (e‘t - ezt) 12

XZ(t) = C2€2t

The phase portrait for the linear system of this example can be found by sketching the solution curves

defined by[T.2} It is shown in Figure 2.

L ‘a2

5 1 =

Figure 1 Figure 2

The phase portrait in Figure 2 can also be obtained from the phase portrait in Figure 1 by applying the

linear transformation of coordinates x = Py. Note that the subspaces spanned by the eigenvectors v;

13
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and v; of the matrix A determine the stable and unstable subspaces of the linear system ??

exercise 23

Solve the initial value problem

x = Ax

for

solution

The solution is given by

cost —sint 1 cost
x(t) = e'xg = e7* =e .
sint cos t 0 sint

It follows that |x(#)| = e™* and that the angle 6(t) = tan™! x2()/x1(t) = t. The solution curve therefore

spirals into the origin as shown in Figure 1 below.Then the fact that x(t) is a solution of (1)

Y (t) = —Ae X (t) + e X (1)
= —Ae~x(t) + e M AX(t)
=0
for all t € R since e~ and A commute. Thus, y(t) is a constant. Setting t = 0 shows that y() = xo and

therefore any solution of the initial value problem (1) is given by x(t) = ey (t) = e'xo.

exercise 24

Solve the initial value problem
x = Ax

]

-2 -1
1 -2

14

x(0) =

for

BN
1l
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solution

the solution is given by

cost —sint 1 cos t
x(t) = eMxg = e =e* .
sint cost 0 sint

It follows that |x(t)| = e~ and that the angle () = tan~! x»(#)/x1(t) = t. The solution curve therefore

spirals into the origin as shown in Figure 1 below.

X2
X
I
Figure 1
exercise 25
Solve the linear system
x = Ax
with
0 -4
A=
1 0 ]

15
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solution

has a center at the origin since the matrix A has eigenvalues A = £2i. According to the theorem in Section
20

P=
0 1

B=P'AP =

1.6, the invertible matrix

1/2 0
0 1

with Pl= [

0 -2
2 0

The solution to the linear system x = Ax is then given by

reduces A to the matrix

cos2t —sin2t

. cos 2t —2sin 2t
x(t)=P P c= c

1/2sin2t  cos2t

sin 2t cos 2t

where ¢ = x(0), or equivalently by

x1(t) = c1 cos 2t — 2¢, sin 2t

Xo(t) = 1/2¢1 sin 2t + ¢ cos 2t.

It is then easily shown that the solutions satisfy
xf(t) + 4x§(t) = c% + 4c§

for all t € R; i.e., the trajectories of this system lie on ellipses as shown in Figure 5.

X2

=
2

SN,
=,

Figure 5. A center at the origin.

16
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exercise 26

Example. Solve the initial value problem (1) for

1 -1 0 0

1 1 0 0
A=

0 0 3 -2

0 01 1

solution

The matrix A has the complex eigenvalues A1 = 1+iand A, =2+i(aswellas Ay =1 —iand A, =2 —1).

A corresponding pair of complex eigenvectors is

i 0
. 1 . 0
Wy = Uy +1iv] = and wy, = Uy + ivy =
0 1+1
0 1

The matrix

1 0 0O
01 0 0
P:[V1 u; vy uz]:
0 0 11
0 0 0 1
is invertible,
1 0 0 O
Pl 01 0 O
0 01 -1
0 0 O 1
and
1 -1 0 O
) 1 1 0 O
P~AP =
0O 0 2 -1
0O 01 2

The solution to the initial value problem (1) is given by

17
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etcost —e'sint 0 0
efsint efcost 0 0 )
x(t)=P P~ xp
0 0 e*cost —e*sint
0 0 eZsint e cost
elcost —efsint 0 0
elsint efcost 0 0
0 0 e*(cost + sint) —2¢? sint
0 0 e* sint e?(cost —sint)

In case A has both real and complex eigenvalues and they are distinct, we have the following
result: If A has distinct real eigenvalues A; and corresponding eigenvectors v, j = 1,...,k and distinct
complex eigenvalues A; = a; + ibj and A; = aj — ib; and corresponding eigenvectors w; = u; + ivj and
wj=uj—ivj,j=k+1,...,n then the matrix

P=lwvi - vk Vi W o vy un]

is invertible and

P'AP = diag[Ay,..., Ak, Best, - - -, Bl

where the 2 X 2 blocks

exercise 27

Solve the initial value problem

x = AX
x(0) = xq
with
-3 0 0
A= 0 3 -2
01 1
solution

has eigenvalues Ay = =3,1; =2 +i (and Ay = 2 — i ). The corresponding eigenvectors

18
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1 0
vi=| 0 and wy=uy+ivo=| 1+1i
0 1
Thus
1 0 0 1 0 0
P=l0o 11|, P'=|0 1 -1
0 0 1 0 0 1
and
-3 0 0
PlAP=| 0 2 -1
01 2

The solution of the initial value problem (1) is given by

g3t 0 0
x(t)=P| 0 e*cost —e*sint |P xo

0 e*sint e*cost

et 0 0
=| 0 e*(cost+sint) —2e* sint X0
0 esint e*(cost — sint)

The stable subspace E° is the x;-axis and the unstable subspace E* is the x;, x3 plane. The phase

portrait is given in this Figure .

Xz

19
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exercise 28

Solve the initial value problem
X = Ax

x(0) = xq

SN

It is easy to determine that A has an eigenvalue A = 2 of multiplicity 2 ;i.e., A1 = A; = 2. Thus,
20
S =
0 2

1 1
-1 -1

It is easy to compute N? = 0 and the solution of the initial value problem for (1) is therefore given by

with

and

N=A-§5=

x(t) = eM'xy = e*[I + Nt]xg
1+¢ t
_ o Xo
—t 1-t
exercise 29

Solve the initial value problem

x = Ax

x(0) = xq
with

0 -2 -1 -1

1 2 1 1

A=

0 1 1 0

0 0 0 1
solution

In this case, the matrix A has an eigenvalue A = 1 of multiplicity 4. Thus, S = I,

20
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and it is easy to compute

and N® = 0;i.e., Nis nilpotent of order 3. The solution of the initial value problem for (1) is therefore

given by

1 1 1 1
o 0 0 O

x(t) = €' [1+ Nt + N*#/2] xo

exercise 30

Solve the initial value problem

with

solution

It is easy to see that A has the eigenvalues A; = 1,1,

corresponding eigenvectors

1-t-1)2

t

2/2

0

V] =

=2t —t2/2 —t—12/2 —t—+t*)2
1+t t t

F+12/2 14422 /2 X
0 0 1
x = Ax

x(0) = xq
100

A=l -1 2 0

11 2

o

and v, =

= O

21

= A3 = 2. And it is not difficult to find the



CHAPTER 1. LINEAR SYSTEMS

Nonzero multiples of these eigenvectors are the only eigenvectors of A corresponding to A; = 1 and
A2 = A3 = 2 respectively. We therefore must find one generalized eigenvector corresponding to A = 2

and independent of v, by solving

1 0 0
(A-2D*v=| 1 0 0 |v=0
-2 0 0
We see that we can choose vz = (0,1,0)”. Thus,
1 00 1 00
P=| 1 0 1 and P'=| 2 0 1
-2 1 0 -1 1 0
We then compute
1 00 1 00
S=Plo 2 0 |P'=|-1 2 0],
0 0 2 2 0 2
0 0O
N=A-S§= 0 0 0,
-1 1 0
and N? = 0. The solution is then given by
e 0 0
xt)=P| 0 ¢* 0 [P I+Ntlx
0 0 ¢
et 0 0
= et — e e 0 |[xo

—2¢t + (2 —t)e* te? e

In the case of multiple complex eigenvalues, we have the following theorem also proved in Appendix
III of Hirsch and Smale [H/S]:
Let A be a real 2n x 2n matrix with complex eigenvalues A; = a; + ibj and A; = a; —ibj,j = 1,...,n.
Then there exists generalized complex eigenvectors w; = u; +iv; and W; = u; —iv;,i = 1,...,n such
that {uy, vy, ..., u,,v,} is a basis for R¥*. For any such basis, the matrix P = [ Vi ou - vy, uy ] is
invertible,
A=S+N

22
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where
a; —b;
P7'SP = diag| ' }
bj a4
the matrix N = A — S is nilpotent of order k < 2n
exercise 32
Solve the initial value problem
x = Ax
x(0) = xo
with
0 -1 0 O
1 00 0
A=
0 00 -1
2 01 0
solution

The matrix A has eigenvalues A = i and A = —i of multiplicity 2. The equation

L
(A - ADw = =0
0 .

N
(@]
—_
|
N
B

is equivalent to z; = z, = 0 and z3 = iz4. Thus, we have one eigenvector w; = (0,0,7,1)T. Also, the

equation

A - A?w = 2 =0
( )
-2 0 -2 2 z3

—4i -2 -2i -2 || z

is equivalent to z; = izy and z3 = iz4 — z;. We therefore choose the generalized eigenvector wy, =
(i,1,0,1). Then u; = (0,0,0,1)T,v; = (0,0,1,0)7, u» = (0,1,0,1)T, 0, = (1,0,0,0)7, and according to the

above theorem,

23
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[0 0 1 0 (0 010
000 1 o 101
/P_: 7
100 0 1 000
(0101 0 100
[0 -1 0 0 [0 -1 0 o
1 00 0 1 00 0
Pt = ,
0 0 0 -1 0 1 0 -1
0 01 o0 1 01 o0
0 00 0
0 00 0
N=A-§=
0 -1 0 0
1 000

and N? = 0. Thus, the solution to the initial value problem

x(t)

exercise 33

cost

sint + tcost

—sint 0 0
sint cost 0 1
P~ [I + Ntlxo

0 0 cost —sint
0 0 sint cost

cost —sint 0 0

sin t cost 0 0

Xo
—tsint sint —tcost cost —sint
—tsint sint cost

Find the stable, unstable and center subspaces E°,E* and ECof the linear system

with The matrix

x = Ax
-2 =1 0
A= 1 -2 0
0 0 3

24
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solution

has eigenvectors

0 1
wy=u;+ivi=| 1 [+i| 0 | corresponding to A; = -2+
0 0
and
0
u; =| 0 | corresponding to A, = 3.
1

The stable subspace E* of (1) is the x1,x; plane and the unstable subspace E" of (1) is the x3-axis. The

phase portrait for the system (1) is shown in this Figure for this exercise.

W 74

Figure: The stable and unstable subspaces E° and E* of the linear system (1).

exercise 34

Find the stable, unstable and center subspaces E*,E* and ECof the linear system (1) with the matrix

0 -1 0
A=11 00
0 0 2

25
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solution

has A = i,u1 = (0,1,0)7, 01 = (1,0,0)T, 1, = 2 and u, = (0,0,1)’. The center subspace of (1) is the x1, x»
plane and the unstable subspace of (1) is the x3-axis. The phase portrait for the system (1) is shown in
Figure 2 for this example. Note that all solutions lie on the cylinders x§ + x5 = ¢.

In these examples we see that all solutions in E* approach the equilibrium point x = 0 as t — oo and
that all solutions in E* approach the equilibrium point x = 0 as t — —co. Also, in the above example the
solutions in E¢ are bounded and if x(0) # 0, then they are bounded away from x = 0 for all f € R. We
shall see that these statements about E° and E" are true in general; however, solutions in E° need not be

bounded as the next example shows.

)
/&

Figure 2. The center and unstable subspaces E° and E* of the linear system (1).

exercise 35

Find the stable, unstable and center subspaces E*,E* and E“of the linear system (1) with the matrix

; e,
1 0

00} =0

X2=xl

26
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solution

We have A; = A, = 0,u5 = (0,1)7 is an eigenvector and u, = (1, 0)7 is a generalized eigenvector

corresponding to A = 0. Thus E¢ = R?. The solution of (1) with x(0) = ¢ = (cy, o) is easily found to be

x1(t) = ¢

x(t) = c1t + ¢s.

Figure 3. The center subspace E° for (1).

exercise 36

Find the stable, unstable and center subspaces E*,E* and E“of the linear system (1) with the matrix

-2 -1 0
A= 1 -2 0
0 0 -3
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solution

We have eigenvalues A; = =2 + i and A, = -3 and the same eigenvectors as in Example 1. E° = R3 and

the origin is a sink for this example. The phase portrait is shown in Figure 4.

Xy

Xz

Figure 4. A linear system with a sink at the origin.

exercise 37

Solve the forced harmonic oscillator problem

¥+x=f(1).

solution

This can be written as the nonhomogeneous system

J'Cl = —X3

X =x1+ f(t)

or equivalently in the form (1) with

2
A= and b(}) =
1 0

0
f®)
In this case ) _

cost —sint

eM = = R(),

sin t cost

a rotation matrix; and

cost sint
e = = R(-t).
—sint cost
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The solution of the above system with initial condition x(0) = X is thus given by
¢
x(t) = etxg + et f e~ Ab(1)dt
0

R+ RO fof[ ;y;w }
T)COST

It follows that the solution x(t) = x1(t) of the original forced harmonic oscillator problem is given by

¢
x(t) = x(0) cost — x(0) sint + f f(1)sin(t — t)dr.
0
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