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CHAPTER 1

LINEAR SYSTEMS

exercise 7

Find the eigenvalues and eigenvectors of the matrix A and show that B = P−1AP is a diagonal matrix.

Solve the linear system ẏ = By and then solve ẋ = Ax using the above corollary. And then sketch the

phase portraits in both the x plane and y plane.

(a) A =

 3 1

1 3


(b) A =

 1 3

3 1


(c) A =

 −1 1

1 −1

.
solution

(a) λ1 = 2, λ2 = 4, v1 = (1,−1)T,v2 = (1, 1)T,P =

 1 1

−1 1

 ,P−1 = 1/2

 1 −1

1 1


and B = P−1AP =

 2 0

0 4


y(t) =

 e2t 0

0 e4t

 y0.

x(t) = P

 e2t 0

0 e4t

 P−1x0 = 1/2

 e2t + e4t e4t
− e2t

e4t
− e2t e4t + e2t

 x0.
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CHAPTER 1. LINEAR SYSTEMS

Figure 1.1: Phase portrait

(b) λ1 = 4, λ2 = −2, v1 = (1, 1)T, v2 = (1,−1)T,

y(t) =

 e4t 0

0 e−2t

 y0,

x(t) = 1/2

 e4t + e−2t e4t
− e−2t

e4t
− e−2t e4t + e−2t

 x0.

(c) λ1 = −2, λ2 = 0, v1 = (1,−1)T, v2 = (1, 1)T,

y(t) =

 e−2t 0

0 1

 y0,

x(t) = 1/2

 e−2t + 1 1 − e−2t

1 − e−2t 1 + e−2t

 x0

Figure 1.2: Phase portrait
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CHAPTER 1. LINEAR SYSTEMS

exercise 8

2. Find the eigenvalues and eigenvectors for the matrix A, solve the linear system ẋ = Ax, determine

the stable and unstable subspaces for the linear system, and sketch the phase portrait for

ẋ =


1 0 0

1 2 0

1 0 −1

 x

solution

λ1 = 1, λ2 = 2, λ3 = −1, v1 = (2,−2, 1)T,v2 = (0, 1, 0)T,v3 = (0, 0, 1)T

y(t) =


et

e2t

e−t

 y0, x(t) = 1/2


2et 0 0

2
(
e2t
− et

)
2e2t 0

et
− e−t 0 2e−t

 x0,

Es = Span {v3} ,Eu = Span {v1,v2} .

exercise 9

Write the following linear differential equations with constant coefficients in the form of the linear system

and solve:

(a) ẍ + ẋ − 2x = 0

(b) ẍ + x = 0

(c)
...
x − 2ẍ − ẋ + 2x = 0

Hint: Let x1 = x, x2 = ẋ1, etc.

solution

ẋ = Ax

(a) A =

 0 1

2 −1


(b) A =

 0 1

−1 0
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CHAPTER 1. LINEAR SYSTEMS

(c) A =


0 1 0

0 0 1

−2 1 2

.

exercise 10

solve the initial value problem

ẋ = Ax

x(0) = x0

(a) with A given by 1 (a) above and x0 = (1, 2)T (b) with A given in problem 2 above and x0 = (1, 2, 3)T.

solution

(a) x(t) = 1/2
(
3e41
− e21, 3e41 + e21

)
(b) x(t) = 1/2

(
2et, 6e2t

− 2et, et + 5e−1
)
.

exercise 11

Let the n × n matrix A have real, distinct eigenvalues. Find conditions on the eigenvalues that are

necessary and sufficient for limt→∞ x(t) = 0 where x(t) is any solution of ẋ = Ax.

solution

limt→∞ x(t) = 0 iff λ j < 0 for j = 1, 2, 3, · · · ,n.

exercise 12

Let the n × n matrix A have real, distinct eigenvalues. Let φ (t, x0) be the solution of the initial value

problem

5



CHAPTER 1. LINEAR SYSTEMS

ẋ = Ax

x(0) = x0.

Show that for each fixed t ∈ R,

lim
y0→x0

φ
(
t,y0

)
= φ (t, x0) .

This shows that the solution φ (t, x0) is a continuous function of the initial condition.

solution

φ (t, x0) = P


eλ11

. . .

eλ01

 P−1x0 and limλ0→x0 φ
(
t,y0

)
= φ (t, x0) since limy0→x0 y0 = x0 according to

the definition of the limit.

exercise 13

Let the 2 × 2 matrix A have real, distinct eigenvalues λ and µ. Suppose that an eigenvector of λ is (1, 0)T

and an eigenvector of µ is (−1, 1)T. Sketch the phase portraits of ẋ = Ax for the following cases:

(a) 0 < λ < µ

(b) 0 < µ < λ

(c) λ < µ < 0

(d) λ < 0 < µ

(e) µ < 0 < λ

(f) λ = 0, µ > 0.

solution

exercise 14

Compute the operator norm of the linear transformation defined by the following matrices:

(a)

 2 0

0 −3
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CHAPTER 1. LINEAR SYSTEMS

Figure 1.3: Phase portrait

(b)

 1 2

0 −1


(c)

 1 0

5 1

.
Hint: In (c) maximize |Ax|2 = 26x2

1 + 10x1x2 + x2
2 subject to the constraint x2

1 + x2
2 = 1 and use the result

of exercise 2; or use the fact that ‖A‖ =
[

Max eigenvalue of ATA
]1/2

. Follow this same hint for (b).

7



CHAPTER 1. LINEAR SYSTEMS

solution

(a) ‖A‖ = max‖≤1 |Ax| = maxw≤1
√

4x2 + 9y2 ≤ 3|x|; but for x = (0, 1)>, |Ax| = | − 3| = 3; thus,

‖A‖ = 3.

(b) the hint for (c), we can maximize |Ax|2 = x2 + 4xy + 5y2 subject to the constraint x2 + y2 = 1

to find x2 = (2 ±
√

2)/4 and y2 = 1 − x2 which leads to ‖A‖ = 2.4142136; or since A> =

 1 2

2 5

 with

eigenvalues 3 ± 2
√

2, we have ‖A‖ =

√
3 + 2

√
2 = 1 +

√
2.

(c) We can either maximize |Ax|2 = 26x2 + 10xy + y2 subject to the constraint x2 + y2 = 1; or find

the eigenvalues of AAT =

 26 5

5 1

 which are (27 ±
√

725)/2; in either case, ‖A‖ = 5.1925824 · · · .

exercise 15

Show that the operator norm of a linear transformation T on Rn satisfies

‖T‖ = max
|x|=1
|T(x)| = sup

x,0

|T(x)|
|x|

solution

2. By definition, ‖T‖ = maxx|≤1 |T(x)|. Thus, ‖T‖ ≥ max{x|=1 |T(x)|. But maxẋ=1 |T(x)| = supx=0
|T(x)|
|x| since if

|x| = a and we set y = x/a for x , 0, then |y| = |x|/a = 1 and since T is linear,

supx,0
|T(x)|
|x| = supx,0

|T(x)|
a = supx,0

∣∣∣∣T (
x
a

)∣∣∣∣ = max|y|=1 |T(y)|·.

Thus, ‖T
∣∣∣≤ supα<x≤1

|T(x)|
|x| ≤ supx,0

|T(x)|
|x| = max|x|=1 |T(x)|. It follows that ‖T‖ = max|x|=1 | T(x)| = supx,0 | T(x)|/|x|.

exercise 16

Use the lemma in section 3.1 to show that if T is an invertible linear transformation then ‖T‖ > 0 and

∥∥∥T−1
∥∥∥ ≥ 1
‖T‖

8



CHAPTER 1. LINEAR SYSTEMS

solution

If T is invertible, then there exists an inverse, T−1, such that TT−1 = 1 and therefore
∥∥∥TT−1

∥∥∥ = 1. By the

lemma in Section 3, 1 =
∥∥∥TT−1

∥∥∥ ≤ ‖T‖ ∥∥∥T−1
∥∥∥. This implies that ‖T‖ > 0,

∥∥∥T−1
∥∥∥ > 0, and

∥∥∥T−1
∥∥∥ ≥ 1

‖ T‖ .

exercise 17

If T is a linear transformation on Rn with ‖T − I‖ < 1, prove that T is invertible and that the series∑
∞

k=0(I − T)k converges absolutely to T−1. Hint: Use the geometric series.

solution

Given T ∈ L (Rn) with ‖I − T‖ < 1.

Let a = ‖I − T‖ < 1 and the geometric series Σak converges.

Thus, by the Weierstrass M-Test,
∑
∞

k=0(I − T)k converges absolutely to S ∈ L (Rn). By induction it follows

that T [I + (I − T) + · · · + (I − T)·] = I − (I − T)n+1.

Thus, TS = T
∑
∞

k=0(I − T)k =
∑
∞

k=0 T(I − T)k = limn→∞
∑n

k=0 T(I − T)k = limn→∞

[
I − (I − T)n+1

]
= 1 since

limn→∞ ‖I − T‖n+1 = 0 which implies that limn→∞(I − T)n+1 = 0

since 0 ≤
∥∥∥(I − T)n+1

∥∥∥ ≤ ‖(I − T)‖a+1. Therefore S = T−1.

exercise 18

Compute the exponentials of the following matrices:

(a)

 2 0

0 −3

 (b)

 1 2

0 −1

 (c)

 1 0

5 1


(d)

 5 −6

3 −4

 (e)

 2 −1

1 2

 (f)

 0 1

1 0

.
solution

. (a) eA =

 e2 0

0 e−3

.
(b) The eigenvalues and eigenvectors of A are λ1 = 1, λ2 = −1, v1 = (1, 0)>, v2 = (−1, 1)T; thus,

eA = P

 e 0

0 e−1

 P−1 =

 e e − e−1

0 e−1

 where P =

 1 −1

0 1

.
(c) eA = e

 1 0

5 1

 by Corollary 4 .

(d) The eigenvalues and eigenvectors of A are λ1 = 2, λ2 = −1, v1 = (2, 1)T,v2 = (1, 1)T; thus,

9



CHAPTER 1. LINEAR SYSTEMS

eA = P

 e2 0

0 e−1

 P−1 =

 2e2
− e−1 2e−1

− 2e2

e2
− e−1 2e−1

− e2

 where P =

 2 1

1 1

.
(e) e∧ = e2

 cos(1) − sin(1)

sin(1) cos(1)

 by Corollary 3 .

(f) The eigenvalues and eigenvectors of A are λ1 = 1, λ2 = −1, v1 = (1, 1)T, v2 = (−1, 1)T; thus

eA = P

 e 0

0 e−1

 P−1 =

 cosh(1) sinh(1)

sinh(1) cosh(1)

 with P =

 1 −1

1 1

. Note that A2 = 1 and from Definition

it therefore follows that eA = 1(1 + 1/2! + 1/4! + · · · )+ A(1 + 1/3! + 1/5! + · · · ) = I cosh(1) + A sinh(1). This

remark also applies to part (b).

exercise 19

(a) For each matrix in exercise 18 find the eigenvalues of eA.

(b) Show that if x is an eigenvector of A corresponding to the eigenvalue λ, then x is also an

eigenvector of eA corresponding to the eigenvalue eλ.

(c) If A = P diag
[
λ j

]
P−1, use Corollary 1 to show that

det eA = etrace A

Also, using the results in the last paragraph of this section, show that this formula holds for any 2× 2

matrix A.

solution

(a) The eigenvalues are e2, e−3; e, e−1; e, e; e2, e−1; e2+i = e2[cos(1) ± i sin(1)]; e, e−1.

(b) If Ax = λx, then eAx = limk→∞

[
I + A + A2/2! + · · · + Ak/k!

]
x = limk→0

[
x + λx + λ2x/2! + · · ·+

λkx/k!
]

= eλx.

(c) If A = P diag
[
λ j

]
P−1, then by Corollary 1 , det eA = det

{
P diag

[
eλ1

]
P−1

}
= det{diag

[
eλi

]}
=

eλ1 · · · eλk = etrees .

For a 2× 2 matrix A with repeated eigenvalues λ, we have det eλ = det

 eλ eλ

0 eλ

 = eλλ = etroceA ; and for

2 × 2 matrix A with complex eigenvalues, λ = a ± ib, we have

deteA = det

 ea cos b −ea sin b

ea sin b ea cos b

 = e2a = eancecA (since the trace A = λ1 + λ2 = (a + ib) + (a − ib) = 2a in

10



CHAPTER 1. LINEAR SYSTEMS

this case ).

exercise 20

Compute the exponentials of the following matrices:

(a)


1 0 0

0 2 0

0 0 3

 (b)


1 0 0

0 2 1

0 0 2

 (c)


2 0 0

1 2 0

0 1 2

.
Hint: Write the matrices in (b) and (c) as a diagonal matrix S plus a matrix N. Show that S and N

commute and compute eS as in part (a) and eN by using the definition.

solution

(a)

eA = diag
[
e, e2, e3

]
.

(b)
1 0 0

0 2 1

0 0 2

 =


0 0 0

0 0 1

0 0 0

 +


1 0 0

0 2 0

0 0 2

 = N + S and NS = SN so that by Proposition 2,

eλ = diag
[
c, e2, e2

] 
1 0 0

0 1 1

0 0 1

 =


e 0 0

0 c2 e2

0 0 e2

 since N2 = 0 implies that eN = 1 + N.

(c)


2 0 0

1 2 0

0 1 2

 =


0 0 0

1 0 0

0 1 0

 +


2 0 0

0 2 0

0 0 2

 = N + S and NS = SN so that by Proposition 2

eλ = eseN = e2


1 0 0

1 1 0

1/2 1 1

 since N3 = 0 implies that eN = I + N + N2/2.

exercise 21

Find 2 × 2 matrices A and B such that eA+B , eAeB.

solution

For A =

 1 0

0 0

 and B =

 0 0

1 0

 we have AB = 0 , BA = B, eA+B =

 c 0

e − 1 1

 , eAeB =

 e 0

1 1

.

11
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exercise 22

Let T be a linear operator on Rn that leaves a subspace E ⊂ Rn invariant; i.e., for all x ∈ E,T(x) ∈ E. Show

that eT also leaves E invariant.

solution

If T(x) ∈ E for all x ∈ E, then by induction T2(x) ∈ E, · · · ,Tx(x) ∈ E

and therefore eT(x) = limk→∞[1 + T + · · · + Tk/k!]x = limk→∞

[
x + T(x) + · · · +

Tk(x)
k!

]
∈ E since any subspace

E of Rn is complete and since xk = x + T(x) + · · · + Tk(x)/k! is a Cauchy sequence in E.

exercise 22

Find the eigenvalues and eigenvectors of the matrix A and show that B = P−1AP is a diagonal matrix.

Solve the linear system ẏ = By and then solve ẋ = Ax using the above corollary. And then sketch the

phase portraits in both the x plane and y plane.

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

(1.1)

solution

Consider the linear system

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

which can be written in the form 1.1 with the matrix A =

 −1 −3

0 2

 The eigenvalues of A are λ1 = −1

and λ2 = 2. A pair of corresponding eigenvectors is given by v1 =

 1

0

 , v2 =

 −1

1


The matrix P and its inverse are then given by

P =

 1 −1

0 1

 and P−1 =

 1 1

0 1


The student should verify that

12



CHAPTER 1. LINEAR SYSTEMS

P−1AP =

 −1 0

0 2


Then under the coordinate transformation y = P−1x, we obtain the uncoupled linear system

ẏ1 = −y1

ẏ2 = 2y2

which has the general solution y1(t) = c1e−t, y2(t) = c2e2t. The phase portrait for this system is given

in Figure 1 . And according to the above corollary, the general solution to the original linear system of

this example is given by

x(t) = P

 e−t 0

0 e2t

 P−1c

where c = x(0), or equivalently by

x1(t) = c1e−t + c2

(
e−t
− e2t

)
x2(t) = c2e2t

(1.2)

The phase portrait for the linear system of this example can be found by sketching the solution curves

defined by 1.2. It is shown in Figure 2.

The phase portrait in Figure 2 can also be obtained from the phase portrait in Figure 1 by applying the

linear transformation of coordinates x = Py. Note that the subspaces spanned by the eigenvectors v1

13
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and v2 of the matrix A determine the stable and unstable subspaces of the linear system ??

exercise 23

Solve the initial value problem

ẋ = Ax

x(0) =

 1

0


for

A =

 −2 −1

1 −2


solution

The solution is given by

x(t) = eAtx0 = e−2t

 cos t − sin t

sin t cos t


 1

0

 = e−2t

 cos t

sin t

 .
It follows that |x(t)| = e−2t and that the angle θ(t) = tan−1 x2(t)/x1(t) = t. The solution curve therefore

spirals into the origin as shown in Figure 1 below.Then the fact that x(t) is a solution of (1)

y′(t) = −Ae−Atx(t) + e−Atx′(t)

= −Ae−Atx(t) + e−AtAx(t)

= 0

for all t ∈ R since e−At and A commute. Thus, y(t) is a constant. Setting t = 0 shows that y(t) = x0 and

therefore any solution of the initial value problem (1) is given by x(t) = eAty(t) = eAtx0.

exercise 24

Solve the initial value problem

ẋ = Ax

x(0) =

 1

0


for

A =

 −2 −1

1 −2


14
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solution

the solution is given by

x(t) = eAtx0 = e−2t

 cos t − sin t

sin t cos t


 1

0

 = e−2t

 cos t

sin t

 .
It follows that |x(t)| = e−2t and that the angle θ(t) = tan−1 x2(t)/x1(t) = t. The solution curve therefore

spirals into the origin as shown in Figure 1 below.

exercise 25

Solve the linear system

ẋ = Ax

with

A =

 0 −4

1 0


15
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solution

has a center at the origin since the matrix A has eigenvalues λ = ±2i. According to the theorem in Section

1.6, the invertible matrix

P =

 2 0

0 1

 with P−1 =

 1/2 0

0 1


reduces A to the matrix

B = P−1AP =

 0 −2

2 0


The solution to the linear system ẋ = Ax is then given by

x(t) = P

 cos 2t − sin 2t

sin 2t cos 2t

 P−1c =

 cos 2t −2 sin 2t

1/2 sin 2t cos 2t

 c

where c = x(0), or equivalently by

x1(t) = c1 cos 2t − 2c2 sin 2t

x2(t) = 1/2c1 sin 2t + c2 cos 2t.

It is then easily shown that the solutions satisfy

x2
1(t) + 4x2

2(t) = c2
1 + 4c2

2

for all t ∈ R; i.e., the trajectories of this system lie on ellipses as shown in Figure 5.

16
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exercise 26

Example. Solve the initial value problem (1) for

A =



1 −1 0 0

1 1 0 0

0 0 3 −2

0 0 1 1


.

solution

The matrix A has the complex eigenvalues λ1 = 1 + i and λ2 = 2 + i (as well as λ̄1 = 1 − i and λ̄2 = 2 − i ).

A corresponding pair of complex eigenvectors is

w1 = u1 + iv1 =



i

1

0

0


and w2 = u2 + iv2 =



0

0

1 + i

1


.

The matrix

P =
[

v1 u1 v2 u2

]
=



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


is invertible,

P−1 =



1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 1


and

P−1AP =



1 −1 0 0

1 1 0 0

0 0 2 −1

0 0 1 2


The solution to the initial value problem (1) is given by

17
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x(t) = P



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t cos t −e2t sin t

0 0 e2t sin t e2t cos t


P−1x0

=



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t(cos t + sin t) −2e2t sin t

0 0 e2t sin t e2t(cos t − sin t)


x0

In case A has both real and complex eigenvalues and they are distinct, we have the following

result: If A has distinct real eigenvalues λ j and corresponding eigenvectors v j, j = 1, . . . , k and distinct

complex eigenvalues λ j = a j + ib j and λ̄ j = a j − ib j and corresponding eigenvectors w j = u j + iv j and

w̄ j = u j − iv j, j = k + 1, . . . ,n, then the matrix

P =
[

v1 · · · vk vk+1 uk+1 · · · vn un

]
is invertible and

P−1AP = diag [λ1, . . . , λk,Bk+1, . . . ,Bn]

where the 2 × 2 blocks

B j =

 a j −b j

b j a j


exercise 27

Solve the initial value problem

ẋ = Ax

x(0) = x0

with

A =


−3 0 0

0 3 −2

0 1 1


solution

has eigenvalues λ1 = −3, λ2 = 2 + i (and λ̄2 = 2 − i ). The corresponding eigenvectors

18
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v1 =


1

0

0

 and w2 = u2 + iv2 =


0

1 + i

1


Thus

P =


1 0 0

0 1 1

0 0 1

 , P−1 =


1 0 0

0 1 −1

0 0 1


and

P−1AP =


−3 0 0

0 2 −1

0 1 2


The solution of the initial value problem (1) is given by

x(t) = P


e−3t 0 0

0 e2t cos t −e2t sin t

0 e2t sin t e2t cos t

 P−1x0

=


e−3t 0 0

0 e2t(cos t + sin t) −2e2t sin t

0 e2t sin t e2t(cos t − sin t)

 x0

The stable subspace Es is the x1-axis and the unstable subspace Eu is the x2, x3 plane. The phase

portrait is given in this Figure .

19
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exercise 28

Solve the initial value problem

ẋ = Ax

x(0) = x0

with

A =

 3 1

−1 1


It is easy to determine that A has an eigenvalue λ = 2 of multiplicity 2 ; i.e., λ1 = λ2 = 2. Thus,

S =

 2 0

0 2


and

N = A − S =

 1 1

−1 −1


It is easy to compute N2 = 0 and the solution of the initial value problem for (1) is therefore given by

x(t) = eAtx0 = e2t[I + Nt]x0

= e2t

 1 + t t

−t 1 − t

 x0

exercise 29

Solve the initial value problem

ẋ = Ax

x(0) = x0

with

A =



0 −2 −1 −1

1 2 1 1

0 1 1 0

0 0 0 1


solution

In this case, the matrix A has an eigenvalue λ = 1 of multiplicity 4 . Thus, S = I4,

20
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N = A − S =



−1 −2 −1 −1

1 1 1 1

0 1 0 0

0 0 0 0


and it is easy to compute

N2 =



−1 −1 −1 −1

0 0 0 0

1 1 1 1

0 0 0 0


and N3 = 0; i.e., N is nilpotent of order 3. The solution of the initial value problem for (1) is therefore

given by

x(t) = et
[
I + Nt + N2t2/2

]
x0

= et



1 − t − t2/2 −2t − t2/2 −t − t2/2 −t − t2/2

t 1 + t t t

t2/2 t + t2/2 1 + t2/2 t2/2

0 0 0 1


x0

exercise 30

Solve the initial value problem

ẋ = Ax

x(0) = x0

with

A =


1 0 0

−1 2 0

1 1 2


solution

It is easy to see that A has the eigenvalues λ1 = 1, λ2 = λ3 = 2. And it is not difficult to find the

corresponding eigenvectors

v1 =


1

1

−2

 and v2 =


0

0

1


21
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Nonzero multiples of these eigenvectors are the only eigenvectors of A corresponding to λ1 = 1 and

λ2 = λ3 = 2 respectively. We therefore must find one generalized eigenvector corresponding to λ = 2

and independent of v2 by solving

(A − 2I)2v =


1 0 0

1 0 0

−2 0 0

 v = 0

We see that we can choose v3 = (0, 1, 0)T. Thus,

P =


1 0 0

1 0 1

−2 1 0

 and P−1 =


1 0 0

2 0 1

−1 1 0


We then compute

S = P


1 0 0

0 2 0

0 0 2

 P−1 =


1 0 0

−1 2 0

2 0 2

 ,

N = A − S =


0 0 0

0 0 0

−1 1 0

 ,
and N2 = 0. The solution is then given by

x(t) = P


et 0 0

0 e2t 0

0 0 e2t

 P−1[I + Nt]x0

=


et 0 0

et
− e2t e2t 0

−2et + (2 − t)e2t te2t e2t

 x0

In the case of multiple complex eigenvalues, we have the following theorem also proved in Appendix

III of Hirsch and Smale [H/S]:

Let A be a real 2n × 2n matrix with complex eigenvalues λ j = a j + ib j and λ̄ j = a j − ib j, j = 1, . . . ,n.

Then there exists generalized complex eigenvectors w j = u j + iv j and w j = u j − iv j, i = 1, . . . ,n such

that {u1,v1, . . . ,un,vn} is a basis for R2n. For any such basis, the matrix P =
[

v1 u1 · · · vn un

]
is

invertible,

A = S + N
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where

P−1SP = diag

 a j −b j

b j a j


the matrix N = A − S is nilpotent of order k ≤ 2n

exercise 32

Solve the initial value problem

ẋ = Ax

x(0) = x0

with

A =



0 −1 0 0

1 0 0 0

0 0 0 −1

2 0 1 0


solution

The matrix A has eigenvalues λ = i and λ̄ = −i of multiplicity 2 . The equation

(A − λI)w =



−i −1 0 0

1 −i 0 0

0 0 −i −1

2 0 1 −i





z1

z2

z3

z4


= 0

is equivalent to z1 = z2 = 0 and z3 = iz4. Thus, we have one eigenvector w1 = (0, 0, i, 1)T. Also, the

equation

(A − λI)2w =



−2 2i 0 0

−2i −2 0 0

−2 0 −2 2i

−4i −2 −2i −2





z1

z2

z3

z4


= 0

is equivalent to z1 = iz2 and z3 = iz4 − z1. We therefore choose the generalized eigenvector w2 =

(i, 1, 0, 1). Then u1 = (0, 0, 0, 1)T,v1 = (0, 0, 1, 0)T, u2 = (0, 1, 0, 1)T, v2 = (1, 0, 0, 0)T, and according to the

above theorem,

23



CHAPTER 1. LINEAR SYSTEMS

P =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 1


, P−1 =



0 0 1 0

0 −1 0 1

1 0 0 0

0 1 0 0


,

S = P



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


P−1 =



0 −1 0 0

1 0 0 0

0 1 0 −1

1 0 1 0


,

N = A − S =



0 0 0 0

0 0 0 0

0 −1 0 0

1 0 0 0


and N2 = 0. Thus, the solution to the initial value problem

x(t) =



cos t − sin t 0 0

sin t cos t 0 0

0 0 cos t − sin t

0 0 sin t cos t


P−1[I + Nt]x0

=



cos t − sin t 0 0

sin t cos t 0 0

−t sin t sin t − t cos t cos t − sin t

sin t + t cos t −t sin t sin t cos t


x0

exercise 33

Find the stable, unstable and center subspaces Es,Eu and ECof the linear system

ẋ = Ax

with The matrix

A =


−2 −1 0

1 −2 0

0 0 3
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solution

has eigenvectors

w1 = u1 + iv1 =


0

1

0

 + i


1

0

0

 corresponding to λ1 = −2 + i

and

u2 =


0

0

1

 corresponding to λ2 = 3.

The stable subspace Es of (1) is the x1, x2 plane and the unstable subspace Eu of (1) is the x3-axis. The

phase portrait for the system (1) is shown in this Figure for this exercise.

Figure: The stable and unstable subspaces Es and Eu of the linear system (1).

exercise 34

Find the stable, unstable and center subspaces Es,Eu and ECof the linear system (1) with the matrix

A =


0 −1 0

1 0 0

0 0 2
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solution

has λ1 = i,u1 = (0, 1, 0)T, v1 = (1, 0, 0)T, λ2 = 2 and u2 = (0, 0, 1)T. The center subspace of (1) is the x1, x2

plane and the unstable subspace of (1) is the x3-axis. The phase portrait for the system (1) is shown in

Figure 2 for this example. Note that all solutions lie on the cylinders x2
1 + x2

2 = c2.

In these examples we see that all solutions in Es approach the equilibrium point x = 0 as t→ ∞ and

that all solutions in Eu approach the equilibrium point x = 0 as t→ −∞. Also, in the above example the

solutions in Ec are bounded and if x(0) , 0, then they are bounded away from x = 0 for all t ∈ R. We

shall see that these statements about Es and Eu are true in general; however, solutions in Ec need not be

bounded as the next example shows.

Figure 2. The center and unstable subspaces Ec and Eu of the linear system (1).

exercise 35

Find the stable, unstable and center subspaces Es,Eu and ECof the linear system (1) with the matrix

A =

 0 0

1 0

 ; i.e.,
ẋ1 = 0

ẋ2 = x1
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solution

We have λ1 = λ2 = 0,u1 = (0, 1)T is an eigenvector and u2 = (1, 0)T is a generalized eigenvector

corresponding to λ = 0. Thus Ec = R2. The solution of (1) with x(0) = c = (c1, c2)T is easily found to be

x1(t) = c1

x2(t) = c1t + c2.

The phase portrait for (1) in this case is given in Figure 3. Some solutions (those with c1 = 0 ) remain

bounded while others do not.

Figure 3. The center subspace Ec for (1).

exercise 36

Find the stable, unstable and center subspaces Es,Eu and ECof the linear system (1) with the matrix

A =


−2 −1 0

1 −2 0

0 0 −3

 .
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solution

We have eigenvalues λ1 = −2 + i and λ2 = −3 and the same eigenvectors as in Example 1. Es = R3 and

the origin is a sink for this example. The phase portrait is shown in Figure 4.

exercise 37

Solve the forced harmonic oscillator problem

ẍ + x = f (t).

solution

This can be written as the nonhomogeneous system

ẋ1 = −x2

ẋ2 = x1 + f (t)

or equivalently in the form (1) with

A =

 0 −1

1 0

 and b(t) =

 0

f (t)

 .
In this case

eAt =

 cos t − sin t

sin t cos t

 = R(t),

a rotation matrix; and

e−At =

 cos t sin t

− sin t cos t

 = R(−t).
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The solution of the above system with initial condition x(0) = x0 is thus given by

x(t) = eAtx0 + eAt
∫ t

0
e−Aτb(τ)dτ

= R(t)x0 + R(t)
∫ t

0

 f (τ) sin τ

f (τ) cos τ

 dτ.

It follows that the solution x(t) = x1(t) of the original forced harmonic oscillator problem is given by

x(t) = x(0) cos t − ẋ(0) sin t +

∫ t

0
f (τ) sin(τ − t)dτ.
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