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CHAPTER 1

STABILITY THEORY OF LINEAR

SYSTEMS

This chapter presents a study of linear systems of ordinary differential equations:

ẋ = Ax (1.1)

where x ∈ Rn,A is an n × n matrix and

ẋ =
dx
dt

=


dx1
dt
...

dxn
dt


It is shown that the solution of the linear system 1.1 together with the initial condition x(0) = x0 is

given by

x(t) = eAtx0

where eAt is an n × n matrix function defined by its Taylor series. A good portion of this chapter is

concerned with the computation of the matrix eAt in terms of the eigenvalues and eigenvectors of the

square matrix A. Throughout this cour all vectors will be written as column vectors and AT will denote

the transpose of the matrix A.
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1.1 Uncoupled Linear Systems

The method of separation of variables can be used to solve the first-order linear differential equation

ẋ = ax

The general solution is given by

x(t) = ceat

where the constant c = x(0), the value of the function x(t) at time t = 0.

Now consider the uncoupled linear system

ẋ1 = −x1

ẋ2 = 2x2

This system can be written in matrix form as (1.1). where

A =

 −1 0

0 2


Note that in this case A is a diagonal matrix, A = diag[−1, 2], and in general whenever A is a

diagonal matrix, the system 1.1 reduces to an uncoupled linear system. The general solution of the

above uncoupled linear system can once again be found by the method of separation of variables. It is

given by

x1(t) = c1e−t (1.2)

x2(t) = c2e2t (1.3)

or equivalently by

x(t) =

 e−t 0

0 e2t

 c (1.4)

where c = x(0). Note that the solution curves 1.2, 4 lie on the algebraic curves y = k/x2 where the

constant k = c2
1c2. The solution 1.2, 4 or 1.4 defines a motion along these curves; i.e., each point c ∈ R2

moves to the point x(t) ∈ R2 given by 1.4 after time t. This motion can be described geometrically

by drawing the solution curves 1.2, 4 in the x1, x2 plane, referred to as the phase plane, and by using

arrows to indicate the direction of the motion along these curves with increasing time t; cf. Figure 1. For

c1 = c2 = 0, x1(t) = 0 and x2(t) = 0 for all t ∈ R and the origin is referred to as an equilibrium point in
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this example. Note that solutions starting on the x1-axis approach the origin as t→∞ and that solutions

starting on the x2-axis approach the origin as t→ −∞.

The phase portrait of a system of differential equations such as 1.1 with x ∈ Rn is the set of all solution

curves of 1.1 in the phase space Rn. Figure 1 gives a geometrical representation of the phase portrait of

the uncoupled linear system considered above. The dynamical system defined by the linear system 1.1

in this example is simply the mapping φ : R × R2
→ R2 defined by the solution x(t, c) given by 1.4; i.e.,

the dynamical system for this example is given by

φ(t, c) =

 e−t 0

0 e2t

 c

Geometrically, the dynamical system describes the motion of the points in phase space along the solution

curves defined by the system of differential equations.
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The function

f(x) = Ax

on the right-hand side of 1.1 defines a mapping f : R2
→ R2 (linear in this case).

This mapping (which need not be linear) defines a vector field on R2; i.e., to each point x ∈ R2, the

mapping f assigns a vector f (x). If we draw each vector f (x) with its initial point at the point x ∈ R2, we

obtain a geometrical representation of the vector field as shown in Figure 2.

Note that at each point x in the phase space R2, the solution curves 1.2 are tangent to the vectors

in the vector field Ax. This follows since at time t = t0, the velocity vector v0 = ẋ (t0) is tangent to the

curve x = x(t) at the point x0 = x (t0) and since ẋ = Ax along the solution curves. Consider the following

uncoupled linear system in R3 :

ẋ1 = x1

ẋ2 = x2

ẋ3 = −x3

(1.5)

The general solution is given by

x1(t) = c1et

x2(t) = c2et

x3(t) = c3e−t

And the phase portrait for this system is shown in Figure 3 above. The x1, x2 plane is referred to as

the unstable subspace of the system (1.5) and

the x3 axis is called the stable subspace of the system (1.5). Precise definitions of the stable and unstable

subspaces of a linear system will be given in the next section.
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1.2 Diagonalization

The algebraic technique of diagonalizing a square matrix A can be used to reduce the linear system (1.1)

to an uncoupled linear system. We first consider the case when A has real, distinct eigenvalues. The

following theorem from linear algebra then allows us to solve the linear system (1.1).

Theorem: If the eigenvalues λ1, λ2, . . . , λn of an n × n matrix A are real and distinct, then any set

of corresponding eigenvectors {v1,v2, . . . ,vn} forms a basis for Rn, the matrix P =
[

v1 v2 · · · vn

]
is

invertible and

P−1AP = diag [λ1, . . . , λn]

This theorem says that if a linear transformation T : Rn
→ Rn is represented by the n × n matrix A

with respect to the standard basis {e1, e2, . . . , en} for Rn, then with respect to any basis of eigenvectors

{v1,v2, . . . ,vn} ,T is represented by the diagonal matrix of eigenvalues, diag [λ1, λ2, . . . , λn]. A proof of

this theorem can be found, for example, in Lowenthal [Lo]. In order to reduce the system (1.1) to an
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uncoupled linear system using the above theorem, define the linear transformation of coordinates

y = P−1x

where P is the invertible matrix defined in the theorem. Then

x = Py,

ẏ = P−1ẋ = P−1Ax = P−1APy

and, according to the above theorem, we obtain the uncoupled linear system

ẏ = diag [λ1, . . . , λn] y

This uncoupled linear system has the solution

y(t) = diag
[
eλ1t, . . . , eλnt

]
y(0)

(Cf. problem 4 in Problem Set 1.) And then since y(0) = P−1x(0) and x(t) = Py(t), it follows that (1.1)

has the solution

x(t) = PE(t)P−1x(0) (1.6)

where E(t) is the diagonal matrix

E(t) = diag
[
eλ1t, . . . , eλnt

]
Corollary. Under the hypotheses of the above theorem, the solution of the linear system (1.1) is given

by the function x(t) defined by (1.6).

Example 1.2.1 Consider the linear system

ẋ1 = −x1 − 3x2

ẋ2 = 2x2

which can be written in the form (1.1) with the matrix

A =

 −1 −3

0 2


The eigenvalues of A are λ1 = −1 and λ2 = 2. A pair of corresponding eigenvectors is given by
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v1 =

 1

0

 , v2 =

 −1

1


The matrix P and its inverse are then given by

P =

 1 −1

0 1

 and P−1 =

 1 1

0 1


The student should verify that

P−1AP =

 −1 0

0 2


Then under the coordinate transformation y = P−1x, we obtain the uncoupled linear system

ẏ1 = −y1

ẏ2 = 2y2

which has the general solution y1(t) = c1e−t, y2(t) = c2e2t. The phase portrait for this system is given in Figure

1 in Section 0.1 which is reproduced below. And according to the above corollary, the general solution to the

original linear system of this example is given by

x(t) = P

 e−t 0

0 e2t

 P−1c

where c = x(0), or equivalently by

x1(t) = c1e−t + c2

(
e−t
− e2t

)
x2(t) = c2e2t (3)

The phase portrait for the linear system of this example can be found by sketching the solution curves defined

by (3). It is shown in Figure 2. The phase portrait in Figure 2 can also be obtained from the phase portrait in

Figure 1 by applying the linear transformation of coordinates x = Py. Note that the subspaces spanned by the

eigenvectors v1 and v2 of the matrix A determine the stable and unstable subspaces of the linear system (1.1)

according to the following definition: Suppose that the n × n matrix A has k negative eigenvalues λ1, . . . , λk and

n− k positive eigenvalues λk+1, . . . , λn and that these eigenvalues are distinct. Let {v1, . . . ,vn} be a corresponding

set of eigenvectors. Then the stable and unstable subspaces of the linear system (1.1), Es and Eu, are the linear
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subspaces spanned by {v1, . . . ,vk} and {vk+1, . . . ,vn} respectively; i.e.,

Es = Span {v1, . . . ,vk}

Eu = Span {vk+1, . . . ,vn}

If the matrix A has pure imaginary eigenvalues, then there is also a center subspace Ec; cf. Problem 2(c) in

Section 0.1. The stable, unstable and center subspaces are defined for the general case in Section 0.9.

1.3 Exponentials of Operators

In order to define the exponential of a linear operator T : Rn
→ Rn, it is necessary to define the concept

of convergence in the linear space L (Rn) of linear operators on Rn. This is done using the operator norm

of T defined by

‖T‖ = max
|x|≤1
|T(x)|

where |x| denotes the Euclidean norm of x ∈ Rn; i.e.,

|x| =
√

x2
1 + · · · + x2

n

The operator norm has all of the usual properties of a norm, namely, for S,T ∈ L (Rn)

(a) ‖T‖ ≥ 0 and ‖T‖ = 0 iff T = 0
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(b) ‖kT‖ = |k|‖T‖ for k ∈ R

(c) ‖S + T‖ ≤ ‖S‖ + ‖T‖.

It follows from the Cauchy-Schwarz inequality that if T ∈ L (Rn) is represented by the matrix A with

respect to the standard basis for Rn, then ‖A‖ ≤
√

n` where ` is the maximum length of the rows of A.

The convergence of a sequence of operators Tk ∈ L (Rn) is then defined in terms of the operator norm

as follows:

Definition 1. A sequence of linear operators Tk ∈ L (Rn) is said to converge to a linear operator

T ∈ L (Rn) as k→∞, i.e.,

lim
k→∞

Tk = T

if for all ε > 0 there exists an N such that for k ≥ N, ‖T − Tk‖ < ε.

Lemma. For S,T ∈ L (Rn) and x ∈ Rn,

(1) |T(x)| ≤ ‖T‖|x|

(2) ‖TS‖ ≤ ‖T‖‖S‖

(3)
∥∥∥Tk

∥∥∥ ≤ ‖T‖k for k = 0, 1, 2, . . ..

Proof. (1) is obviously true for x = 0. For x , 0 define the unit vector y = x/|x|. Then from the

definition of the operator norm,

‖T‖ ≥ |T(y)| =
1
|x|
|T(x)|

(2) For |x| ≤ 1, it follows from (1) that

|T(S(x))| ≤ ‖T‖|S(x)|

≤ ‖T‖‖S‖|x|

≤ ‖T‖‖S‖.

Therefore,

‖TS‖ = max
|x|≤1
|TS(x)| ≤ ‖T‖‖S‖

and (3) is an immediate consequence of (2).

Theorem. Given T ∈ L (Rn) and t0 > 0, the series

∞∑
k=0

Tktk

k!

is absolutely and uniformly convergent for all |t| ≤ t0.

Proof. Let ‖T‖ = a. It then follows from the above lemma that for |t| ≤ t0,
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∥∥∥∥∥∥Tktk

k!

∥∥∥∥∥∥ ≤ ‖T‖k|t|kk!
≤

aktk
0

k!

But

∞∑
k=0

aktk
0

k!
= eat0

It therefore follows from the Weierstrass M-Test that the series

∞∑
k=0

Tktk

k!

is absolutely and uniformly convergent for all |t| ≤ t0; cf. [R],p.148.

The exponential of the linear operator T is then defined by the absolutely convergent series

eT =

∞∑
k=0

Tk

k!

It follows from properties of limits that eT is a linear operator on Rn and it follows as in the proof of

the above theorem that
∥∥∥eT

∥∥∥ ≤ e‖T‖.

Since our main interest in this chapter is the solution of linear systems of the form

ẋ = Ax

we shall assume that the linear transformation T on Rn is represented by the n × n matrix A with

respect to the standard basis for Rn and define the exponential eAt.

Definition 2. Let A be an n × n matrix. Then for t ∈ R,

eAt =

∞∑
k=0

Aktk

k!

For an n × n matrix A, eAt is an n × n matrix which can be computed in terms of the eigenvalues and

eigenvectors of A. This will be carried out

in the remainder of this chapter. As in the proof of the above theorem
∥∥∥eAt

∥∥∥ ≤ e‖A‖|t| where ‖A‖ = ‖T‖ and

T is the linear transformation T(x) = Ax.

We next establish some basic properties of the linear transformation eT in order to facilitate the

computation of eT or of the n × n matrix eA.

Proposition 1. If P and T are linear transformations on Rn and S = PTP−1, then eS = PeTP−1.

Proof. It follows from the definition of eS that

eS = lim
n→∞

n∑
k=0

(
PTP−1

)k

k!
= P lim

n→∞

n∑
k=0

Tk

k!
P−1 = PeTP−1
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The next result follows directly from Proposition 1 and Definition 2.

Corollary 1. If P−1AP = diag
[
λ j

]
then eAt = P diag

[
eλ jt

]
P−1.

Proposition 2. If S and T are linear transformations on Rn which commute, i.e., which satisfy ST = TS,

then eS+T = eSeT.

Proof. If ST = TS, then by the binomial theorem

(S + T)n = n!
∑

j+k=n

S jTk

j!k!

Therefore,

eS+T =

∞∑
n=0

∑
j+k=n

S jTk

j!k!
=

∞∑
j=0

S j

j!

∞∑
k=0

Tk

k!
= eSeT

We have used the fact that the product of two absolutely convergent series is an absolutely convergent

series which is given by its Cauchy product; cf. [R], p. 74.

Upon setting S = −T in Proposition 2, we obtain

Corollary 2. If T is a linear transformation on Rn, the inverse of the linear transformation eT is given by(
eT

)−1
= e−T.

Corollary 3. If

A =

 a −b

b a


then

eA = ea

 cos b − sin b

sin b cos b


Proof. If λ = a + ib, it follows by induction that

 a −b

b a


k

=

 Re
(
λk

)
− Im

(
λk

)
Im

(
λk

)
Re

(
λk

) 
where Re and Im denote the real and imaginary parts of the complex number λ respectively. Thus,
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eA =

∞∑
k=0

 Re
(
λk
k!

)
− Im

(
λk

k!

)
Im

(
λk

k!

)
Re

(
λk

k!

) 
=

 Re
(
eλ

)
− Im

(
eλ

)
Im

(
eλ

)
Re

(
eλ

) 
= ea

 cos b − sin b

sin b cos b


Note that if a = 0 in Corollary 3, then eA is simply a rotation through b radians.

Corollary 4. If

A =

 a b

0 a


then

eA = ea

 1 b

0 1


Proof. Write A = aI + B where

B =

 0 b

0 0


Then aI commutes with B and by Proposition 2,

eA = eaIeB = eaeB

And from the definition

eB = I + B + B2/2! + · · · = I + B

since by direct computation B2 = B3 = · · · = 0.

We can now compute the matrix eAt for any 2 × 2 matrix A. In Section 1.8 of this chapter it is shown

that there is an invertible 2 × 2 matrix P (whose columns consist of generalized eigenvectors of A ) such

that the matrix

B = P−1AP

has one of the following forms
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B =

 λ 0

0 µ

 , B =

 λ 1

0 λ

 or B =

 a −b

b a


It then follows from the above corollaries and Definition 2 that

eBt =

 eλt 0

0 eµt

 , eBt = eλt

 1 t

0 1

 or eBt = eat

 cos bt − sin bt

sin bt cos bt


respectively. And by Proposition 1, the matrix eAt is then given by

eAt = PeBtP−1

As we shall see in Section 1.4, finding the matrix eAt is equivalent to solving the linear system (1) in

Section 1.1.

1.4 The Fundamental Theorem for Linear Systems

Let A be an n × n matrix. In this section we establish the fundamental fact that for x0 ∈ Rn the initial

value problem

ẋ = Ax

x(0) = x0. (1)

has a unique solution for all t ∈ Rn which is given by

x(t) = exp(At)X0. (2)

Notice the similarity in the form of the solution (2) and the solution x(t) = exp(At)X0 of the elementary

first-order differential equation x′ = ax and initial condition x(0) = x0

In order to prove this theorem, we first compute the derivative of the exponential function eAt using the

basic fact from analysis that two convergent limit processes can be interchanged if one of them converges

uniformly.

Lemma. Let A be a square matrix, then
d
dt

eAt = AeAt.
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Proof. Since A commutes with itself, it follows from Proposition 2 and Definition 2 in Section 3 that

d
dt

eAt = lim
h→0

eA(t+h)
− eAt

h

= lim
h→0

eAt

(
eAh
− I

)
h

= eAt lim
h→0

lim
k→∞

(
A +

A2h
2!

+ · · · +
Akhk−1

k!

)
= AeAt.

The last equality follows since by the theorem in Section 1.3 the series defining eAh converges uniformly

for |h| ≤ 1 and we can therefore interchange the two limits.

Theorem( The Fundamental Theorem for Linear Systems).

Let A be an n × n matrix. Then for a given x0 ∈ Rn, the initial value problem

ẋ = Ax

x(0) = x0 (1)

has a unique solution given by

x(t) = eAtx0. (2)

Proof. By the preceding lemma, if x(t) = eAtx0, then

x′(t) =
d
dt

eAtx0 = AeAtx0 = Ax(t)

for all t ∈ R. Also, x(0) = Ix0 = x0. Thus x(t) = eAtx0 is a solution. To see that this is the only solution, let

x(t) be any solution of the initial value problem (1) and set

y(t) = e−Atx(t).

Then from the above lemma and the fact that x(t) is a solution of (1)

y′(t) = −Ae−Atx(t) + e−Atx′(t)

= −Ae−Atx(t) + e−AtAx(t)

= 0
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for all t ∈ R since e−At and A commute. Thus, y(t) is a constant. Setting t = 0 shows that y(t) = x0 and

therefore any solution of the initial value problem (1) is given by x(t) = eAty(t) = eAtx0. This completes

the proof of the theorem.

Example 1.4.1 Solve the initial value problem

ẋ = Ax

x(0) =

 1

0


for

A =

 −2 −1

1 −2


and sketch the solution curve in the phase plane R2. By the above theorem and Corollary 3 of the last section, the

solution is given by

x(t) = eAtx0 = e−2t

 cos t − sin t

sin t cos t


 1

0

 = e−2t

 cos t

sin t

 .
It follows that |x(t)| = e−2t and that the angle θ(t) = tan−1 x2(t)/x1(t) = t. The solution curve therefore spirals

into the origin as shown in Figure 1 below.

18



Linear Systems

1.5 Linear Systems in R2

In this section we discuss the various phase portraits that are possible for the linear system

ẋ = Ax (1)

when x ∈ R2 and A is a 2 × 2 matrix. We begin by describing the phase portraits for the linear system

ẋ = Bx (2)

where the matrix B = P−1AP has one of the forms given at the end of Section 1.3. The phase portrait for

the linear system (1) above is then obtained from the phase portrait for (2) under the linear transformation

of coordinates x = Py as in Figures 1 and 2 in Section 1.2. First of all, if

B =

 λ 0

0 µ

 , B =

 λ 1

0 λ

 , or B =

 a −b

b a

 ,
it follows from the fundamental theorem in Section 1.4 and the form of the matrix eBt computed in Section

1.3 that the solution of the initial value problem (2) with x(0) = x0 is given by

x(t) =

 eλt 0

0 eµt

 x0, x(t) = eλt

 1 t

0 1

 x0,

or

x(t) = eat

 cos bt − sin bt

sin bt cos bt

 x0

respectively. We now list the various phase portraits that result from these solutions, grouped according

to their topological type with a finer classification of sources and sinks into various types of unstable

and stable nodes and foci:

Case I. B =

 λ 0

0 µ

 with λ < 0 < µ.
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The phase portrait for the linear system (2) in this case is given in Figure 1. See the first example in

Section 1.1. The system (2) is said to have a saddle at the origin in this case. If µ < 0 < λ, the arrows

in Figure 1 are reversed. Whenever A has two real eigenvalues of opposite sign, λ < 0 < µ, the phase

portrait for the linear system (1) is linearly equivalent to the phase portrait shown in Figure 1; i.e., it is

obtained from Figure 1 by a linear transformation of coordinates; and the stable and unstable subspaces

of (1) are determined by the eigenvectors of A as in the Example in Section 1.2. The four non-zero

trajectories or solution curves that approach the equilibrium point at the origin as t → ±∞ are called

separatrices of the system.

Case II. B =

 λ 0

0 µ

 with λ ≤ µ < 0 or B =

 λ 1

0 λ

 with λ < 0. The phase portraits for the linear

system (2) in these cases are given in Figure 2. Cf. the phase portraits in Problems 1(a), (b) and (c) of

Problem Set 1 respectively. The origin is referred to as a stable node in each of these

cases. It is called a proper node in the first case with λ = µ and an improper node in the other two cases.

If λ ≥ µ > 0 or if λ > 0 in Case II, the arrows in Figure 2 are reversed and the origin is referred to as

an unstable node. Whenever A has two negative eigenvalues λ ≤ µ < 0, the phase portrait of the linear

system (1) is linearly equivalent to one of the phase portraits shown in Figure 2. The stability of the node

is determined by the sign of the eigenvalues: stable if λ ≤ µ < 0 and unstable if λ ≥ µ > 0. Note that

each trajectory in Figure 2 approaches the equilibrium point at the origin along a well-defined tangent
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line θ = θ0, determined by an eigenvector of A, as t→∞.
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Case III. B =

 a −b

b a

 with a < 0. b > 0 b < 0

The phase portrait for the linear system (2) in this case is given in Figure 3. Cf. Problem 9. The

origin is referred to as a stable focus in these cases. If a > 0, the trajectories spiral away from the origin

with increasing t and the origin is called an unstable focus. Whenever A has a pair of complex conjugate

eigenvalues with nonzero real part, a ± ib, with a < 0, the phase portraits for the system (1) is linearly

equivalent to one of the phase portraits shown in Figure 3. Note that the trajectories in Figure 3 do not

approach the origin along well-defined tangent lines; i.e., the angle θ(t) that the vector x(t) makes with

the x1-axis does not approach a constant θ0 as t → ∞, but rather |θ(t)| → ∞ as t → ∞ and |x(t)| → 0 as

t→∞ in this case.

Case IV. B =

 0 −b

b 0

 The phase portrait for the linear system (2) in this case is given in Figure 4.

Cf. Problem 1(d) in Problem Set 1. The system (2) is said to have a center at the origin in this case.

Whenever A has a pair of pure imaginary complex conjugate eigenvalues, ±ib, the phase portrait of the

linear system (1) is linearly equivalent to one of the phase portraits shown in Figure 4. Note that the

trajectories or solution curves in Figure 4 lie on circles |x(t)| = constant. In general, the trajectories of the

system (1) will lie on ellipses and the solution x(t) of (1) will satisfy m ≤ |x(t)| ≤ M for all t ∈ R; cf. the

following Example. The angle θ(t) also satisfies |θ(t)| → ∞ as t→∞ in this case.
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If one (or both) of the eigenvalues of A is zero, i.e., if det A = 0, the origin is called a degenerate

equilibrium point of (1). The various portraits for the linear system (1) are determined in Problem 4 in

this case.

Example 1.5.1 (A linear system with a center at the origin).

The linear system

ẋ = Ax

with

A =

 0 −4

1 0


has a center at the origin since the matrix A has eigenvalues λ = ±2i. According to the theorem in Section 1.6, the

invertible matrix

P =

 2 0

0 1

 with P−1 =

 1/2 0

0 1


reduces A to the matrix

B = P−1AP =

 0 −2

2 0


The student should verify the calculation. The solution to the linear system ẋ = Ax, as determined by Sections

1.3 and 1.4 , is then given by

x(t) = P

 cos 2t − sin 2t

sin 2t cos 2t

 P−1c =

 cos 2t −2 sin 2t

1/2 sin 2t cos 2t

 c

where c = x(0), or equivalently by

x1(t) = c1 cos 2t − 2c2 sin 2t

x2(t) = 1/2c1 sin 2t + c2 cos 2t.
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It is then easily shown that the solutions satisfy

x2
1(t) + 4x2

2(t) = c2
1 + 4c2

2

for all t ∈ R; i.e., the trajectories of this system lie on ellipses as shown in Figure 5.

Definition 1. The linear system (1) is said to have a saddle, a node, a focus or a center at the origin if the

matrix A is similar to one of the matrices B in Cases I, II, III or IV respectively, i.e., if its phase portrait

is linearly equivalent to one of the phase portraits in Figures 1, 2, 3 or 4 respectively.

Remark If the matrix A is similar to the matrix B, i.e., if there is a nonsingular matrix P such that

P−1AP = B, then the system (1) is transformed into the system (2) by the linear transformation of

coordinates x = Py. If B has the form III, then the phase portrait for the system (2) consists of either a

counterclockwise motion (if b > 0 ) or a clockwise motion (if b < 0 ) on either circles (if a = 0 ) or spirals

(if a , 0 ). Furthermore, the direction of rotation of trajectories in the phase portraits for the systems (1)

and (2) will be the same if det P > 0 (i.e., if P is orientation preserving) and it will be opposite if det P < 0

(i.e., if P is orientation reversing).

For det A , 0 there is an easy method for determining if the linear system has a saddle, node, focus or

center at the origin. This is given in the next theorem. Note that if det A , 0 then Ax = 0 if x = 0; i.e., the

origin is the only equilibrium point of the linear system (1) when det A , 0. If the origin is a focus or a

center, the sign σ of ẋ2 for x2 = 0 (and for small x1 > 0 ) can be used to determine whether the motion is

counterclockwise (if σ > 0 ) or clockwise (if σ < 0 ).

Theorem. Let δ = det A and τ = trace A and consider the linear system

ẋ = Ax. (1)

(a) If δ < 0 then (1) has a saddle at the origin.

(b) If δ > 0 and τ2
− 4δ ≥ 0 then (1) has a node at the origin; it is stable if τ < 0 and unstable if τ > 0.
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(c) If δ > 0, τ2
− 4δ < 0, and τ , 0 then (1) has a focus at the origin; it is stable if τ < 0 and unstable if

τ > 0.

(d) If δ > 0 and τ = 0 then (1) has a center at the origin.

Note that in case (b), τ2
≥ 4|δ| > 0; i.e., τ , 0.

Proof The eigenvalues of the matrix A are given by

λ =
τ ±
√

τ2 − 4δ
2

Thus (a) if δ < 0 there are two real eigenvalues of opposite sign.

(b) If δ > 0 and τ2
− 4δ ≥ 0 then there are two real eigenvalues of the same sign as τ;

(c) if δ > 0, τ2
− 4δ < 0 and τ , 0 then there are two complex conjugate eigenvalues λ = a± ib and, as will

be shown in Section 1.6, A is similar to the matrix B in Case III above with a = τ/2; and

(d) if δ > 0 and τ = 0 then there are two pure imaginary complex conjugate eigenvalues. Thus, cases a,

b, c and d correspond to the Cases I, II, III and IV discussed above and we have a saddle, node, focus or

center respectively.

Definition 2. A stable node or focus of (1) is called a sink of the linear system and an unstable node or

focus of (1) is called a source of the linear system.

The above results can be summarized in a "bifurcation diagram," shown in Figure 6, which separates

the (τ, δ)-plane into three components in which the solutions of the linear system (1) have the same

"qualitative structure". In describing the topological behavior or qualitative structure of the solution set

of a linear system, we do not distinguish between nodes and foci, but only if they are stable or unstable.

There are eight different topological types of behavior that are possible for a linear system according to

whether δ , 0 and it has a source, a sink, a center or a saddle or whether δ = 0 and it has one of the four

types of behavior determined in Problem 4.
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1.6 Complex Eigenvalues

If the 2n × 2n real matrix A has complex eigenvalues, then they occur in complex conjugate pairs and if

A has 2n distinct complex eigenvalues, the following theorem from linear algebra proved in Hirsch and

Smale [H/S] allows us to solve the linear system (1.1).

Theorem. If the 2n × 2n real matrix A has 2n distinct complex eigenualues λ j = a j + ib j and λ̄ j = a j − ib j

and corresponding complex eigenvectors

w j = u j + iv j and w̄ j = u j − iv j, j = 1, . . . ,n, then {u1, v1, . . . ,un, vn} is a basis for R2n, the matrix

P =
[

v1 u1 v2 u2 · · · vn un

]
is invertible and

P−1AP = ding

 a j −b j

b j a j

 ,
a real 2n × 2n matrix with 2 × 2 blocks along the diagonal.

Remark. Note that if instead of the matrix P we use the invertible matrix

Q =
[

u1 v1 u2 v2 · · · un vn

]
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then

Q−1AQ = diag

 a j b j

−b j a j

 .
The next corollary then follows from the above theorem and the fundamental theorem in Section 1.4.

Corollary. Under the hypotheses of the above theorem, the solution of the instial value problem

ẋ = Ax

x(0) = x0 (1)

is given by

x(t) = P diag ea jt

 cos b jt − sin b jt

sin b jt cos b jt

 P−1x0.

Note that the matrix

R =

 cos bt − sin bt

sin bt cos bt


represents a rotation through bt radians.

Example 1.6.1 Solve the initial value problem (1) for

A =



1 −1 0 0

1 1 0 0

0 0 3 −2

0 0 1 1


.

The matrix A has the complex eigenvalues λ1 = 1 + i and λ2 = 2 + i (as well as λ̄1 = 1 − i and λ̄2 = 2 − i ).

A corresponding pair of complex eigenvectors is

w1 = u1 + iv1 =



i

1

0

0


and w2 = u2 + iv2 =



0

0

1 + i

1


.

The matrix

P =
[

v1 u1 v2 u2

]
=



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


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is invertible,

P−1 =



1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 1


and

P−1AP =



1 −1 0 0

1 1 0 0

0 0 2 −1

0 0 1 2


The solution to the initial value problem (1) is given by

x(t) = P



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t cos t −e2t sin t

0 0 e2t sin t e2t cos t


P−1x0

=



et cos t −et sin t 0 0

et sin t et cos t 0 0

0 0 e2t(cos t + sin t) −2e2t sin t

0 0 e2t sin t e2t(cos t − sin t)


x0

In case A has both real and complex eigenvalues and they are distinct, we have the following result: If A

has distinct real eigenvalues λ j and corresponding eigenvectors v j, j = 1, . . . , k and distinct complex eigenvalues

λ j = a j + ib j and λ̄ j = a j − ib j and corresponding eigenvectors w j = u j + iv j and w̄ j = u j − iv j, j = k + 1, . . . ,n,

then the matrix

P =
[

v1 · · · vk vk+1 uk+1 · · · vn un

]
is invertible and

P−1AP = diag [λ1, . . . , λk,Bk+1, . . . ,Bn]

where the 2 × 2 blocks

B j =

 a j −b j

b j a j


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for j = k + 1, . . . ,n. We illustrate this result with an example.

Example 1.6.2 The matrix

A =


−3 0 0

0 3 −2

0 1 1


has eigenvalues λ1 = −3, λ2 = 2 + i (and λ̄2 = 2 − i ). The corresponding eigenvectors

v1 =


1

0

0

 and w2 = u2 + iv2 =


0

1 + i

1


Thus

P =


1 0 0

0 1 1

0 0 1

 , P−1 =


1 0 0

0 1 −1

0 0 1


and

P−1AP =


−3 0 0

0 2 −1

0 1 2


The solution of the initial value problem (1) is given by

x(t) = P


e−3t 0 0

0 e2t cos t −e2t sin t

0 e2t sin t e2t cos t

 P−1x0

=


e−3t 0 0

0 e2t(cos t + sin t) −2e2t sin t

0 e2t sin t e2t(cos t − sin t)

 x0

The stable subspace Es is the x1-axis and the unstable subspace Eu is the x2, x3 plane. The phase portrait is

given in Figure 1.
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1.7 Multiple Eigenvalues

The fundamental theorem for linear systems in Section 1.4 tells us that the solution of the linear system

(1.1) together with the initial condition x(0) = x0 is given by

x(t) = eAtx0

We have seen how to find the n × n matrix eAt when A has distinct eigenvalues. We now complete

the picture by showing how to find eAt, i.e., how to solve the linear system (1), when A has multiple

eigenvalues.

Definition 1 Let λ be an eigenvalue of the n × n matrix A of multiplicity m ≤ n. Then for k = 1, . . . ,m,

any nonzero solution v of

(A − λI)kv = 0

is called a generalized eigenvector of A.

Definition 2 An n × n matrix N is said to be nilpotent of order k if Nk−1 , 0 and Nk = 0.

The following theorem is proved, for example, in Appendix III of Hirsch and Smale [H/S].

Theorem 1. Let A be a real n × n matrix with real eigenvalues λ1, . . . , λn repeated according to their

multiplicity. Then there exists a basis of generalized eigenvectors for Rn. And if {v1, . . . ,vn} is any basis

of generalized eigenvectors for Rn, the matrix P = [v1 · · · vn] is invertible,

A = S + N
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where

P−1SP = diag
[
λ j

]
the matrix N = A − S is nilpotent of order k ≤ n, and S and N commute, i.e., SN = NS.

This theorem together with the propositions in Section 1.3 and the fundamental theorem in Section

1.4 then lead to the following result.

Corollary 1. Under the hypotheses of the above theorem, the linear system (1.1), together with the

initial condition x(0) = x0, has the solution

x(t) = P diag
[
eλ jt

]
P−1

[
I + Nt + · · · +

Nk−1tk−1

(k − 1)!

]
x0

If λ is an eigenvalue of multiplicity n of an n×n matrix A, then the above results are particularly easy

to apply since in this case

S = diag[λ]

with respect to the usual basis for Rn and

N = A − S

The solution to the initial value problem (1) together with x(0) = x0 is therefore given by

x(t) = eλt
[
I + Nt + · · · +

Nktk

k!

]
x0

Let us consider two examples where the n×n matrix A has an eigenvalue of multiplicity n. In these ex-

amples, we do not need to compute a basis of generalized eigenvectors to solve the initial value problem!

Theorem 2. Let A be a real 2n× 2n matrix with complex eigenvalues λ j = a j + ib j and λ̄ j = a j − ib j, j =

1, . . . ,n. Then there exists generalized complex eigenvectors w j = u j + iv j and w j = u j − iv j, i = 1, . . . ,n

such that {u1,v1, . . . ,un,vn} is a basis for R2n. For any such basis, the matrix P =
[

v1 u1 · · · vn un

]
is invertible,

A = S + N

where

P−1SP = diag

 a j −b j

b j a j


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the matrix N = A − S is nilpotent of order k ≤ 2n, and S and N commute.

The next corollary follows from the fundamental theorem in Section 1.4 and the results in Section 1.3:

Corollary 2. Under the hypotheses of the above theorem, the solution of the initial value problem

(1.1), together with x(0) = x0, is given by

x(t) = P diag ea jt

 cos b jt − sin b jt

sin b jt cos b jt

 P−1

[
I + · · · +

Nktk

k!

]
x0

1.8 Stability Theory

In this section we define the stable, unstable and center subspace, Es,Eu and Ec respectively, of a linear

system (1.1). Recall that Es and Eu were defined in Section 1.2 in the case when A had distinct eigenvalues.

We also establish some important properties of these subspaces in this section. Let w j = u j + iv j; be a

generalized eigenvector of the (real) matrix A corresponding to an eigenvalue λ j = a j + ib j. Note that if

b j = 0 then v j = 0. And let

B = {u1, . . . ,uk,uk+1,vk+1, . . . ,um,vm}

be a basis of Rn (with n = 2m − k ) as established by Theorems 1 and 2 and the Remark in Section 1.7.

Definition 1. Let λ j = a j + ib j,w j = u j + iv j and B be as described above. Then

Ea = Span
{
u j,v j | a j < 0

}
Ec = Span

{
u j,v j | a j = 0

}
and

Eu = Span
{
u j,v j | a j > 0

}
;

i.e., Es,Ec and Eu are the subspaces of Rn spanned by the real and imaginary parts of the generalized

eigenvectors w j corresponding to eigenvalues λ j with negative, zero and positive real parts respectively.

Definition 2. If all eigenvalues of the n×n matrix A have nonzero real part, then the flow eAt; Rn
→ Rn

is called a hyperbolic flow and (1.1) is called a hyperbolic linear system.

Definition 3. A subspace E ⊂ Rn is said to be invariant with respect to the flow eAt : Rn
→ Rn if

eAtE ⊂ E for all t ∈ R.

We next show that the stable, unstable and center subspaces, Es,Eu and Ec of (1.1) are invariant under

the flow eAt of the linear system (1.1); i.e., any solution starting in Eu,Eu or Ec at time t = 0 remains in

Eu,Eu or Ec respectively for all t ∈ R.
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Lemma. Let E be the generalized eigenspace of A corresponding to an eigenvalue λ. Then AE ⊂ E.

Proof. Let {v1, . . . ,vk} be a basis of generalized eigenvectors for E. Then given v ∈ E,

v =

k∑
j=1

c jv j

and by linearity

Av =

k∑
j=1

c jAv j

Now since each v j satisfies

(A − λI)k j v j = 0

for some minimal k j, we have

(A − λI)v j = V j

where V j ∈ Ker(A − λI)k j−1
⊂ E. Thus, it follows by induction that Av j = λv j + V j ∈ E and since E is a

subspace of Rn, it follows that
k∑

j=1

c jAv j ∈ E

i.e., Av ∈ E and therefore AE ⊂ E.

Theorem 1. Let A be a real n × n matrix. Then

Rn = Es
⊕ Eu

⊕ Ec

where Es,Eu and Ec are the stable, unstable and center subspaces of (1.1) respectively; furthermore, Ea,Eu

and Ec are invariant with respect to the flow eAt of (1.1) respectively.

Proof. Since B = {u1, . . . ,uk,uk+1,vk+1, . . . ,um,vm} described at the beginning of this section is a basis

for Rn, it follows from the definition of Es,Eu and Ec that

Rn = Es
⊕ Eu

⊕ Ec

If x0 ∈ Es then

x0 =

n4∑
j=1

c jV j

where V j = v j or u j and
{
V j

}n∗

j=1
⊂ B is a basis for the stable subspace Es as described in Definition 1 .
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Then by the linearity of eAt, it follows that

eAtx0 =

n4∑
j=1

c jeAtV j

But

eAtV j = lim
k→∞

[
I + At + · · · +

Aktk

k!

]
V j ∈ E∗

since for j = 1, . . . ,ns by the above lemma AkV j ∈ Es and since Es is complete. Thus, for all t ∈ R, eAtx0 ∈ Es

and therefore eAtEs
⊂ Es; i.e., Es is invariant under the flow eAt. It can similarly be shown that Ew and Ec

are invariant under the flow eAt.

We next generalize the definition of sinks and sources of two-dimensional systems given in Section 1.5.

Definition 4. If all of the eigenvalues of A have negative (positive) real parts, the origin is called a sink

(source) for the linear system (1.1).

Theorem 2. The following statements are equivalent:

(a) For all x0 ∈ Rn, limt→∞ eAtx0 = 0 and for x0 , 0, limt→−∞

∣∣∣eAtx0

∣∣∣ = ∞.

(b) All eigenvalues of A have negative real part.

(c) There are positive constants a, c,m and M such that for all x0 ∈ Rn

∣∣∣eAtx0

∣∣∣ ≤Me−ct
|x0|

for t ≥ 0 and ∣∣∣eAtx0

∣∣∣ ≥ me−at
|x0|

for t ≤ 0.

Proof ( a⇒ b ): If one of the eigenvalues λ = a + ib has positive real part, a > 0, then by the theorem and

corollary in Section 1.8, there exists an x0 ∈ Rn, x0 , 0, such that
∣∣∣eAtx0

∣∣∣ ≥ eat
|x0|. Therefore

∣∣∣eAtx0

∣∣∣→∞ as

t→∞ i.e.,

lim
t→∞

eAtx0 , 0.

And if one of the eigenvalues of A has zero real part, say λ = ib, then by the corollary in Section 1.8,

there exists x0 ∈ Rn, x0 , 0 such that at least one component of the solution is of the form ctk cos bt or

ctk sin bt with k ≥ 0. And once again

lim
t→∞

eAtx0 , 0.

Thus, if not all of the eigenvalues of A have negative real part, there exists x0 ∈ Rn such that eA1x0 9 0

as t → ∞; i.e., a ⇒ b. (b ⇒ c) : If all of the eigenvalues of A have negative real part, then it follows

from the Jordan canonical form theorem and its corollary in Section 1.8 that there exist positive constants

a, c,m and M such that for all x0 ∈ Rn
∣∣∣eAtx0

∣∣∣ ≤ Me−ct
|x0| for t ≥ 0 and

∣∣∣eAtx0

∣∣∣ ≥ me−at
|x0| for t ≤ 0. (c⇒ a):
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If this last pair of inequalities is satisfied for all x0 ∈ Rn, it follows by taking the limit as t→ ±∞ on each

side of the above inequalities that

lim
t→∞

∣∣∣eAtx0

∣∣∣ = 0 and that lim
t→−∞

∣∣∣eAtx0

∣∣∣ = ∞

for x0 , 0. This completes the proof of Theorem 2.

The next theorem is proved in exactly the same manner as Theorem 2 above using the theorem and its

corollary in Section 1.8.

Theorem 3. The following statements are equivalent:

(a) For all x0 ∈ Rn
· limt→−∞ eAtx0 = 0 and for x0 , 0, limt→∞

∣∣∣eAtx0

∣∣∣ =∞.

(b) All eigenvalues of A have positive real part.

(c) There are positive constants a, c,m and M such that for all x0 ∈ Rn

∣∣∣eAtx0

∣∣∣ ≤Mect
|x0|

for t ≤ 0 and ∣∣∣eAtx0

∣∣∣ ≥ meat
|x0|

for t ≥ 0.

Corollary. If x0 ∈ Es, then eAtx0 ∈ Es for all t ∈ R and

lim
t→∞

eAtx0 = 0.

And if x0 ∈ Eu, then eAtx0 ∈ Eu for all t ∈ R and

lim
t→−∞

eAtx0 = 0.

Thus, we see that all solutions of (1) which start in the stable manifold Es of (1) remain in E∗ for all t

and approach the origin exponentially fast as t→ ∞; and all solutions of (1) which start in the unstable

manifold Eu of (1) remain in Eu for all t and approach the origin exponentially fast as t→ −∞.

1.9 Nonhomogeneous Linear Systems

In this section we solve the nonhomogeneous linear system

ẋ = Ax + b(t) (1.7)

where A is an n × n matrix and b(t) is a continuous vector valued function.
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Definition. A fundamental matrix solution of (1.1) is any nonsingular n × n matrix function Φ(t) that

seatisfies

Φ′(t) = AΦ(t) for all t ∈ R.

Note that according to the lemma in Section 1.4, Φ(t) = eAt is a fundamental matrix solution which

satisfies Φ(0) = I, the n × n identity matrix. Furthermore, any fundamental matrix solution Φ(t) of (1.7)

is given by Φ(t) = eAtC for some nonsingular matrix C. Once we have found a fundamental matrix

solution of (1.7), it is easy to solve the nonhomogeneous system (1.1). The result is given in the following

theorem.

Theorem 1. If Φ(t) is any fundamental matrix solution of (1.7), then the solution of the nonhomogeneous

linear system (1.1) and the initial condition x(0) = x0 is unique and is given by

x(t) = Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ. (1.8)

Proof. For the function x(t) defined above,

x′(t) =Φ′(t)Φ−1(0)x0 + Φ(t)Φ−1(t)b(t)

+

∫ t

0
Φ′(t)Φ−1(τ)b(τ)dτ

And since Φ(t) is a fundamental matrix solution of (1.1), it follows that

x′(t) = A
[
Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ

]
+ b(t)

= Ax(t) + b(t)

for all t ∈ R. And this completes the proof of the theorem.

Remark 1. If the matrix A in (1.7) is time dependent, A = A(t), then exactly the same proof shows that

the solution of the nonhomogenous linear system (1.7) and the initial condition x(0) = x0 is given by (1.8)

provided that Φ(t) is a fundamental matrix solution of (1.1) with a variable coefficient matrix A = A(t).

For the most part, we do not consider solutions of (1.1) with A = A(t) in this book. The reader should

consult [C/L], [H] or [W] for a discussion of this topic which requires series methods and the theory of

special functions.

Remark 2. With Φ(t) = eAt, the solution of the nonhomogeneous linear system (1.7), as given in the

above theorem, has the form

x(t) = eAtx0 + eAt
∫ t

0
e−Aτb(τ)dτ.
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