
Chapter 2

Local Bifurcations of Co-dimension 1

Introduction
The theory of bifurcations in dynamical systems aims to describe the changes in the phase
portraits of vector fields depending on a parameter µ ∈ Rk:

ẋ = f(x, µ). (2.1)

A value µ∗ of the parameter µ is said to be a bifurcation value if the vector field f(x, µ∗) is
not topologically equivalent to f(x, µ) for all µ in a neighborhood of µ∗.

Definition 2.0.1 (Topological equivalence). Two dynamical systems ẋ = f(x) and ẏ = g(y),
where f is defined on an open set U ⊂ Rn, are said to be *topologically equivalent* if there
exists a homeomorphism h : U → V that maps the trajectories of the first system to those of
the second, preserving the direction of time.

If φ and ψ are the flows of the two systems, then for y = h(x), we have:

ψ(t, h(x)) = h ◦ φ(t, x).

Definition 2.0.2 (Structural stability). A vector field f ∈ C1(U) is said to be *structurally
stable* if there exists ε > 0 such that any g ∈ C1(U) satisfying:

∥f − g∥ < ε,

is topologically equivalent to f .

2.1 Some Bifurcations in Dimension 1

2.1.1 Saddle-node bifurcation
Consider the differential equation:

ẋ = µ− x2 = f(x, µ), (2.2)

where µ is a real parameter. Three cases arise depending on the value of µ:

1. If µ < 0: there are no equilibrium points, and ẋ is always negative.

2. If µ = 0: the origin is the only equilibrium point, with:

ẋ = −x2 < 0, ∀x.

iii



iv CHAPTER 2. LOCAL BIFURCATIONS OF CO-DIMENSION 1

3. If µ > 0: two equilibrium points exist: x∗
1 = √

µ and x∗
2 = −√

µ. The stability is
determined by:

∂f

∂x
(x∗

1) = −2√
µ < 0 (stable),

∂f

∂x
(x∗

2) = 2√
µ > 0 (unstable).

2.1.2 Supercritical pitchfork bifurcation
Consider the differential equation:

ẋ = µx− x3 = f(x, µ),

where µ is a real parameter. Three cases are possible:

1. µ < 0: The origin is the only equilibrium point and is stable.

2. µ = 0: The origin remains the only equilibrium point and is stable.

3. µ > 0: Three equilibrium points appear: the origin (unstable), and x∗
1 = √

µ, x∗
2 = −√

µ
(both stable).

2.1.3 Transcritical bifurcation
Consider the differential equation:

ẋ = µx+ x2,

where µ is a real parameter. Two equilibrium points always exist: 0 and x∗ = −µ. We
distinguish three cases:

1. µ < 0: The origin is stable, while x∗ = −µ is unstable.

2. µ = 0: The two points merge into a single semi-stable equilibrium point.

3. µ > 0: The origin becomes unstable, while x∗ is stable.

2.2 Some Bifurcations in Dimension 2

2.2.1 Saddle-node bifurcation in 2D
Consider the system: ẋ = µ+ x2,

ẏ = −y.

The system has two equilibrium points for µ < 0:

E1 = (−
√

−µ, 0), E2 = (
√

−µ, 0).

The Jacobian matrix at a point (x, y) is given by:

A(x, y) =
(

2x 0
0 −1

)
.
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At the equilibrium points:

A(±
√

−µ, 0) =
(

±2
√

−µ 0
0 −1

)
.

Thus, E1 is a stable node, while E2 is a saddle (unstable).
For µ = 0, the origin is the only equilibrium point and is semi-stable. For µ > 0, there are

no equilibrium points.
The phase portraits for different values of µ are illustrated below:

Figure 2.1: Phase portrait for µ < 0.

Figure 2.2: Phase portrait for µ = 0.
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Figure 2.3: Phase portrait for µ > 0.

2.3 Hopf Bifurcation
Consider the differential system:{

ẋ = y + x(µ− x2 − y2),
ẏ = −x+ y(µ− x2 − y2)

This system has a unique equilibrium point at the origin, (0, 0), for all values of µ.
In polar coordinates, the system becomes:{

ṙ = r(µ− r2),
θ̇ = −1

We have three possibilities depending on the sign of µ:

1. µ < 0: In this case, ṙ < 0 for all r ̸= 0, and the trajectories spiral toward the origin,
which is a stable focus.

2. µ = 0: In this case, ṙ = −r3 < 0 for all r ̸= 0, and the trajectories spiral toward the
origin, which remains a stable focus.

3. µ > 0: In this case, the first equation has two equilibrium points: r = 0 and r = √
µ.

The origin is unstable, and the second equilibrium point at r = √
µ is stable. This leads

to a closed trajectory, a stable limit cycle.

Theorem 2.3.1. Supercritical Hopf Bifurcation
Consider the differential system: {

x′ = f(x, y, µ),
y′ = g(x, y, µ),

where µ is a real parameter. Suppose that the origin is an equilibrium point for all values of µ.
Let the linear part of the system be represented by:

A(0, 0) =
(∂f

∂x
∂f
∂y

∂g
∂x

∂g
∂y

)
(0, 0).
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Figure 2.4: µ < 0.

In general, a Hopf bifurcation occurs when the determinant is non-negative and the trace can
change sign as µ varies. Let λ1(µ), λ2(µ) be the eigenvalues of A(0, 0). We define:

λ1,2(µ) = α(µ) = ±β(µ).

Theorem 2.3.2. Hopf Bifurcation
Suppose the following three conditions hold:

1. There exists µc such that α(µc) = 0.

2. β(µc) ̸= 0.

3. ∂α
∂µ

(µc) > 0.

Then, we can conclude:

a) µ = µc is a bifurcation value.

b) There exists µ1 ≤ µc such that for µ ∈ [µ1, µc], the origin is a stable focus.

c) For any neighborhood of µ around the origin, there exists µ2 > µc such that for µ ∈ (µc, µ2],
the origin is an unstable focus surrounded by a stable limit cycle whose amplitude increases
as

√
µ− µc.

2.4 Subcritical Hopf Bifurcation
When the limit cycle that appears is unstable, the origin is unstable. This type of bifurcation
is called subcritical. There is a method by Marsden and McCracken to analyze this. Consider
the Jacobian matrix:

A =
( df

dx
df
dy

dg
dx

dg
dy

)
.
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Figure 2.5: µ = 0.

We seek a change of basis matrix P that brings the linear part of the system to Jordan form
when µ = µc:

D = P−1AP =
(

0 B∗

−B∗ 0

)
.

The system in the new coordinates (u, v) can be written as:u′ = h(u, v),
v′ = k(u, v),

where h and k are functions of u and v. The relationship between (u, v) and (x, y) is:(
u
v

)
= P−1

(
x
y

)
⇒

(
x
y

)
= P

(
u
v

)
.

One can then compute an index I called the Marsden-McCracken index:

Definition 2.4.1. The Marsden-McCracken index is defined by:

I = β∗(huuu+huvv+kuuv+kvvv)+(huu×kuu−huu×kuv+kuu+kuv+kvv×kuv−hvv×huv−hvv×kvv).

If I < 0, the cycle is stable.
If I > 0, the cycle is unstable.
If I = 0, the bifurcation may be degenerate, and in this case, there is no limit cycle, but there
may be a center at the origin at the bifurcation.

In the case of a subcritical bifurcation where I > 0, the theorem can be written as: Under
the same conditions as in the previous theorem, we conclude that if ∂α

∂µ
(µc) < 0, then:

a) µ = µc is a bifurcation value.

b) There exists µ1 < µc such that for µ ∈ [µ1, µc], the origin is an unstable focus.
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Figure 2.6: µ > 0.

c) There exists µ2 > µc such that for µ ∈ (µ2, µc], the origin is a stable focus surrounded by
an unstable cycle whose amplitude increases with

√
µ− µc.

Subcritical Hopf bifurcation diagram I > 0

∂α

∂µ
(µc) < 0
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Subcritical Hopf bifurcation diagram I > 0:

∂α

∂µ
(µc) > 0
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