# Chapter 2

# Local Bifurcations of Co-dimension 1

## Introduction

The theory of bifurcations in dynamical systems aims to describe the changes in the phase portraits of vector fields depending on a parameter  $\mu \in \mathbb{R}^k$ :

$$\dot{x} = f(x,\mu). \tag{2.1}$$

A value  $\mu^*$  of the parameter  $\mu$  is said to be a bifurcation value if the vector field  $f(x, \mu^*)$  is not topologically equivalent to  $f(x, \mu)$  for all  $\mu$  in a neighborhood of  $\mu^*$ .

**Definition 2.0.1** (Topological equivalence). Two dynamical systems  $\dot{x} = f(x)$  and  $\dot{y} = g(y)$ , where f is defined on an open set  $U \subset \mathbb{R}^n$ , are said to be \*topologically equivalent\* if there exists a homeomorphism  $h: U \to V$  that maps the trajectories of the first system to those of the second, preserving the direction of time.

If  $\varphi$  and  $\psi$  are the flows of the two systems, then for y = h(x), we have:

$$\psi(t, h(x)) = h \circ \varphi(t, x).$$

**Definition 2.0.2** (Structural stability). A vector field  $f \in C^1(U)$  is said to be \*structurally stable\* if there exists  $\varepsilon > 0$  such that any  $g \in C^1(U)$  satisfying:

$$\|f - g\| < \varepsilon,$$

is topologically equivalent to f.

## 2.1 Some Bifurcations in Dimension 1

### 2.1.1 Saddle-node bifurcation

Consider the differential equation:

$$\dot{x} = \mu - x^2 = f(x, \mu),$$
(2.2)

where  $\mu$  is a real parameter. Three cases arise depending on the value of  $\mu$ :

- 1. If  $\mu < 0$ : there are no equilibrium points, and  $\dot{x}$  is always negative.
- 2. If  $\mu = 0$ : the origin is the only equilibrium point, with:

$$\dot{x} = -x^2 < 0, \quad \forall x.$$

3. If  $\mu > 0$ : two equilibrium points exist:  $x_1^* = \sqrt{\mu}$  and  $x_2^* = -\sqrt{\mu}$ . The stability is determined by:

$$\frac{\partial f}{\partial x}(x_1^*) = -2\sqrt{\mu} < 0 \quad \text{(stable)},$$
$$\frac{\partial f}{\partial x}(x_2^*) = 2\sqrt{\mu} > 0 \quad \text{(unstable)}.$$

## 2.1.2 Supercritical pitchfork bifurcation

Consider the differential equation:

$$\dot{x} = \mu x - x^3 = f(x, \mu),$$

where  $\mu$  is a real parameter. Three cases are possible:

- 1.  $\mu < 0$ : The origin is the only equilibrium point and is stable.
- 2.  $\mu = 0$ : The origin remains the only equilibrium point and is stable.
- 3.  $\mu > 0$ : Three equilibrium points appear: the origin (unstable), and  $x_1^* = \sqrt{\mu}$ ,  $x_2^* = -\sqrt{\mu}$  (both stable).

## 2.1.3 Transcritical bifurcation

Consider the differential equation:

$$\dot{x} = \mu x + x^2,$$

where  $\mu$  is a real parameter. Two equilibrium points always exist: 0 and  $x^* = -\mu$ . We distinguish three cases:

- 1.  $\mu < 0$ : The origin is stable, while  $x^* = -\mu$  is unstable.
- 2.  $\mu = 0$ : The two points merge into a single semi-stable equilibrium point.
- 3.  $\mu > 0$ : The origin becomes unstable, while  $x^*$  is stable.

## 2.2 Some Bifurcations in Dimension 2

### 2.2.1 Saddle-node bifurcation in 2D

Consider the system:

$$\begin{cases} \dot{x} = \mu + x^2, \\ \dot{y} = -y. \end{cases}$$

The system has two equilibrium points for  $\mu < 0$ :

$$E_1 = (-\sqrt{-\mu}, 0), \quad E_2 = (\sqrt{-\mu}, 0).$$

The Jacobian matrix at a point (x, y) is given by:

$$\mathcal{A}(x,y) = \begin{pmatrix} 2x & 0\\ 0 & -1 \end{pmatrix}.$$

At the equilibrium points:

$$\mathcal{A}(\pm\sqrt{-\mu},0) = \begin{pmatrix} \pm 2\sqrt{-\mu} & 0\\ 0 & -1 \end{pmatrix}.$$

Thus,  $E_1$  is a stable node, while  $E_2$  is a saddle (unstable).

For  $\mu = 0$ , the origin is the only equilibrium point and is semi-stable. For  $\mu > 0$ , there are no equilibrium points.

The phase portraits for different values of  $\mu$  are illustrated below:





Figure 2.1: Phase portrait for  $\mu < 0$ .





Figure 2.2: Phase portrait for  $\mu = 0$ .



Figure 2.3: Phase portrait for  $\mu > 0$ .

## 2.3 Hopf Bifurcation

Consider the differential system:

$$\left\{ \begin{array}{rll} \dot{x} &=& y+x(\mu-x^2-y^2),\\ \dot{y} &=& -x+y(\mu-x^2-y^2) \end{array} \right.$$

This system has a unique equilibrium point at the origin, (0,0), for all values of  $\mu$ . In polar coordinates, the system becomes:

$$\begin{cases} \dot{r} = r(\mu - r^2), \\ \dot{\theta} = -1 \end{cases}$$

We have three possibilities depending on the sign of  $\mu$ :

- 1.  $\mu < 0$ : In this case,  $\dot{r} < 0$  for all  $r \neq 0$ , and the trajectories spiral toward the origin, which is a stable focus.
- 2.  $\mu = 0$ : In this case,  $\dot{r} = -r^3 < 0$  for all  $r \neq 0$ , and the trajectories spiral toward the origin, which remains a stable focus.
- 3.  $\mu > 0$ : In this case, the first equation has two equilibrium points: r = 0 and  $r = \sqrt{\mu}$ . The origin is unstable, and the second equilibrium point at  $r = \sqrt{\mu}$  is stable. This leads to a closed trajectory, a stable limit cycle.

#### Theorem 2.3.1. Supercritical Hopf Bifurcation

Consider the differential system:

$$\left\{ \begin{array}{l} x'=f(x,y,\mu),\\ y'=g(x,y,\mu), \end{array} \right.$$

where  $\mu$  is a real parameter. Suppose that the origin is an equilibrium point for all values of  $\mu$ . Let the linear part of the system be represented by:

$$\mathcal{A}(0,0) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} (0,0).$$



Figure 2.4:  $\mu < 0$ .

In general, a Hopf bifurcation occurs when the determinant is non-negative and the trace can change sign as  $\mu$  varies. Let  $\lambda_1(\mu), \lambda_2(\mu)$  be the eigenvalues of  $\mathcal{A}(0,0)$ . We define:

$$\lambda_{1,2}(\mu) = \alpha(\mu) = \pm \beta(\mu).$$

#### Theorem 2.3.2. Hopf Bifurcation

Suppose the following three conditions hold:

- 1. There exists  $\mu_c$  such that  $\alpha(\mu_c) = 0$ .
- 2.  $\beta(\mu_c) \neq 0.$
- 3.  $\frac{\partial \alpha}{\partial \mu}(\mu_c) > 0.$

Then, we can conclude:

- a)  $\mu = \mu_c$  is a bifurcation value.
- b) There exists  $\mu_1 \leq \mu_c$  such that for  $\mu \in [\mu_1, \mu_c]$ , the origin is a stable focus.
- c) For any neighborhood of  $\mu$  around the origin, there exists  $\mu_2 > \mu_c$  such that for  $\mu \in (\mu_c, \mu_2]$ , the origin is an unstable focus surrounded by a stable limit cycle whose amplitude increases as  $\sqrt{\mu \mu_c}$ .

# 2.4 Subcritical Hopf Bifurcation

When the limit cycle that appears is unstable, the origin is unstable. This type of bifurcation is called subcritical. There is a method by Marsden and McCracken to analyze this. Consider the Jacobian matrix:

$$A = \begin{pmatrix} \frac{df}{dx} & \frac{df}{dy} \\ \frac{dg}{dx} & \frac{dg}{dy} \end{pmatrix}.$$



Figure 2.5: 
$$\mu = 0$$
.

We seek a change of basis matrix P that brings the linear part of the system to Jordan form when  $\mu = \mu_c$ :

$$D = P^{-1}AP = \begin{pmatrix} 0 & B^* \\ -B^* & 0 \end{pmatrix}.$$

The system in the new coordinates (u, v) can be written as:

$$\begin{cases} u' = h(u, v), \\ v' = k(u, v), \end{cases}$$

where h and k are functions of u and v. The relationship between (u, v) and (x, y) is:

$$\begin{pmatrix} u \\ v \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} u \\ v \end{pmatrix}.$$

One can then compute an index I called the Marsden-McCracken index:

**Definition 2.4.1.** The Marsden-McCracken index is defined by:

 $I = \beta^*(h_{uuu} + h_{uvv} + k_{uuv} + k_{vvv}) + (h_{uu} \times k_{uu} - h_{uu} \times k_{uv} + k_{uu} + k_{uv} + k_{vv} \times k_{uv} - h_{vv} \times h_{uv} - h_{vv} \times k_{vv}).$ If I < 0, the cycle is stable. If I > 0, the cycle is unstable. If I = 0, the bifurcation may be degenerate, and in this case, there is no limit cycle, but there may be a center at the origin at the bifurcation.

In the case of a subcritical bifurcation where I > 0, the theorem can be written as: Under the same conditions as in the previous theorem, we conclude that if  $\frac{\partial \alpha}{\partial \mu}(\mu_c) < 0$ , then:

a)  $\mu = \mu_c$  is a bifurcation value.

b) There exists  $\mu_1 < \mu_c$  such that for  $\mu \in [\mu_1, \mu_c]$ , the origin is an unstable focus.



Figure 2.6:  $\mu > 0$ .

c) There exists  $\mu_2 > \mu_c$  such that for  $\mu \in (\mu_2, \mu_c]$ , the origin is a stable focus surrounded by an unstable cycle whose amplitude increases with  $\sqrt{\mu - \mu_c}$ .



Subcritical Hopf bifurcation diagram  ${\cal I}>0$ 

$$\frac{\partial \alpha}{\partial \mu}(\mu_c) < 0$$



Subcritical Hopf bifurcation diagram I > 0:

$$\frac{\partial \alpha}{\partial \mu}(\mu_c) > 0$$