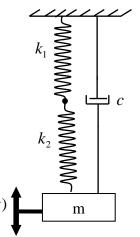
Centre Universitaire Abd elhafid boussouf Mila


Institut des Sciences et de la Technologie

Département de GM & EM

Série N°4 Vibrations forcées des systèmes à un degré de liberté

Exercice 1

Une masse m suspendue à 2 ressorts k_1 et k_2 , ne peut se déplacer que verticalement. La masse est soumise à une force de frottement proportionnelle à la vitesse (c : est le coefficient de proportionnalité).

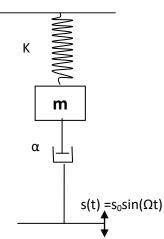
- 1- Calculer le battement naturel w_0 des petites oscillations.
- 2- Calculer le battement w_a des petites oscillations faiblement amortie.
- 3- Dans la condition $\frac{w_0 w_a}{w_0} = \frac{1}{100}$, calculer: le coefficient c, le décrément logarithmique et le coefficient de qualité Q.
- 4- Une force sinusoïdale $F(t) = F_0 \sin \omega t$ est appliquée à la masse m. résoudre l'équation différentielle régissant le mouvement.

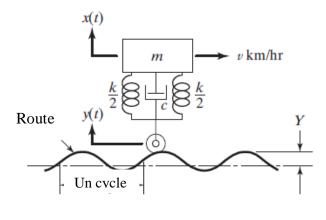
Exercice 2

Une masse (m=10 kg) suspendue à un ressort ($k = 4000Nm^{-1}$) est soumise à une force harmonique d'amplitude 400 N et de fréquence f = 1.6Hz. Déterminer :

- 1) L'extension du ressort sous l'effet du poids de m.
- 2) La déflection statique δ_{st} de la masse sous l'effet de la force d'excitation maximale.
- 3) Si à l'instant initiales ($x_0 = 0.1m$, $\dot{x}_0 = 10ms^{-1}$), trouver la réponse transitoire et la réponse permanente du système à la force d'excitation.

Exercice 3


Le système ci-contre est constitué d'une masse m reliée à un bâti fixe par un ressort de raideur K et de l'autre côté par un amortisseur de coefficient de frottement visqueux c. L'extrémité du amortisseur se déplace par $s(t) = s_O \sin(\Omega t)$.


- 1- Trouver l'énergie cinétique T et l'énergie potentielle U du système
- 2- Trouver la fonction de dissipation.
- 3- Etablir l'équation différentielle du mouvement.
- 4- Trouver le battement de la résonance.

Exercice 4

On peut moduler un véhicule $(m=1200kg, k_{eq}=400KNm^{-1}, \ \varepsilon=0.5;$ où ε est le rapport d'amortissement) qui roule sur une route rigoureuse avec une vitesse 20Km/h par la figure ci-contre. Si l'on considère que la surface de la route varie sinusoïdalement avec une amplitude de 0.05m et une longueur d'onde 6m. Trouver:

- 1- Le battement naturel du véhicule.
- 2- La valeur de l'amortisseur du véhicule.
- 3- Le déplacement vertical du véhicule.
- 4- Le rapport $\frac{x_{\text{max}}}{y_{\text{max}}}$ du déplacement maximal vertical du véhicule et Y.

$$y(t) = y_0 \sin wt$$