Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Sciences First year of Computer Science License 2024/2025

Algebra I, Worksheet 3

Exercise n°1 : Which of the following relations define functions?

$$a)\Gamma_{\mathfrak{R}_{1}} = \{(2,1), (5,1), (8,1), (11,1), (14,1)\} \\ b)\Gamma_{\mathfrak{R}_{2}} = \{(1,3), (1,5), (2,5)\} \\ c)\Gamma_{\mathfrak{R}_{3}} = \{(1,c), (2,b), (3,a), (4,b)\}$$

Exercise $\mathbf{n}^{\circ}2$: Let $f : E \times E \longrightarrow \mathbb{R}$ be an application such that

$$\forall a, b, c \in E : f(a, b) + f(b, c) + f(c, a) = 0.$$

Prove that the relation \Re defined on *E* by $a\Re b$ if and only if f(a, b) = 0 is an equivalence relation. **Exercise n**°3 : Let *E* be a set, and *A* and *B* be two subsets of *E*. Prove the following properties

1.
$$\varphi_A + \varphi_{C_E^A} = 1$$

3. $\varphi_{A\cup B} = \varphi_A + \varphi_B - \varphi_A.\varphi_B$
4. $\varphi_{A\setminus B} = \varphi_A(1 - \varphi_B).$

where φ_A is the indicator mapping of *A*, defined as

$$\varphi_A: E \longrightarrow \{0, 1\}$$
$$x \longmapsto \varphi_A(x) = \begin{cases} 1, \text{ if } x \in A\\ 0, \text{ if } x \notin A \end{cases}$$

Exercise n°4 :

1. Let $f : E \longrightarrow F$ be a mapping. Prove the following (a) $\forall A, B \in \mathcal{P}(E) : A \subset B \Longrightarrow f(A) \subset f(B)$. (b) $\forall A, B \in \mathcal{P}(E) : f(A \cup B) = f(A) \cup f(B)$. (c) $\forall A, B \in \mathcal{P}(E) : f(A \cap B) \subset f(A) \cap f(B)$. (d) $\forall C, D \in \mathcal{P}(F) : C \subset D \Longrightarrow f^{-1}(C) \subset f^{-1}(D)$. (e) $\forall C, D \in \mathcal{P}(F) : f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. 2. Let the mapping $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by f(x, y) = x - y, and let $A = \{0, 1\} \times \{1, 2\}$. a. Find f(A). Deduce that f is not injective. b. Is the mapping f surjective ?

Exercise $\mathbf{n}^{\circ}5$: Let E = [0, 1] and F = [0, 2] be intervals in \mathbb{R} , and let f and g be two mappings defined as follows

1. Determine the mappings $f \circ g$ and $g \circ f$.

2. Find $f^{-1}({0})$. Deduce that f is not surjective.

3. Prove that $g \circ f$ is bijective, and find $(g \circ f)^{-1}$.

Exercise n°6 : Prove that the mapping

$$\begin{array}{rcl} f: & (\mathbb{N}^*, |) & \longrightarrow & (\mathbb{N}^*, |) \\ & x & \longmapsto & f(x) = x^2 \end{array}$$

is strictly increasing with respect to the divisibility relation.

Exercise (Supplementary Exercise) Let *E*,*F* and *G* be three non-empty sets. Let $f : E \longrightarrow F$ and $q : F \longrightarrow G$ be two mappings. Prove the following properties

1. If *f* and *q* are injective, then $q \circ f$ is injective.

2. If *f* and *q* are surjective, then $q \circ f$ is surjective.

3. If *f* and *q* are bijective, then $q \circ f$ is bijective.

4. If $q \circ f$ is injective, then f is injective.

5. If $g \circ f$ is surjective, then g is surjective.