Democratic and Popular Republic of Algeria University Center: Abdelhafid Boussouf. Mila

Institute of Mathematics and Computer Sciences Department of Mathematics Dr.Rakia Ahmed-Yahia 2024-2025 L3 Mathematics, S5. Email:r.ahmedyahia@center-univ-mila.dz

Normed Vector Spaces Exercises of chapter 1 :Hilbert spaces

Exercise1 Prove that in a real vector space with inner product we have :

$$\langle x/y \rangle = 1/4(||x+y||^2 - ||x-y||^2)$$

and in a complex vector space with inner product we have

$$\langle x/y \rangle = 1/4(||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2)$$

These are the so-called polarization identities. They tell us that in a Hilbert space, the inner product is determined by the norm.

Exercise 2 $E = \mathcal{M}_{(m,n)}(R)$ is the real vector space of matrices with m rows and n columns. For $a \in E, b \in E$, we put

$$\langle a/b \rangle = tr(a^T.b).$$

- Show that we define an inner product on E.

Exercise 3 Show that the sup-norm on C[a, b] the vector space of all \mathbb{C} -valued continuous functions on [a, b], is not induced by an inner product.

we have:

$$||f|| = max_{t \in [a,b]} |f(t)|.$$

Exercise 4^{*} Let H be an inner product space. Describe all pairs of vectors x, y for which

$$||x + y|| = ||x|| + ||y||$$

Exercise 5^{*} Let [a, b] be a finite interval. Show that $L^2([a, b]) \subset L^1([a, b])$.

Exercise 6

- 1. Let H be a Hilbert space, and let B be the closed unit ball of H.
 - (a) Show that $\forall x \in H \setminus B, \forall z \in B$, we have $\left(\operatorname{Re}\left\langle z, \frac{x}{\|x\|} \right\rangle 1\right) \leq 0$.
 - (b) Deduce the sign of Re $\left\langle z \frac{x}{\|x\|}, x \frac{x}{\|x\|} \right\rangle$.
 - (c) Derive an expression for the projection onto B, the closed unit ball of H. Justify.
- 2. We consider in the space of periodic functions $L_2[-\pi,\pi]$, the subspace $F = vect\{e^{-int}, ..., e^{int}\}$.
 - (a) Find the projection of f on F
 - (b) Deduce the distance from f to the subspace F.

Exercise 7 Let be $H = \ell^2(\mathbb{N}, \mathbb{R})$ (the real Hilbert space). We denote

$$C = \{x = (x_n) \in H; \forall n \in \mathbb{N}, x_n \ge 0\}$$

- 1 Prove that C is a closed convex set.
- 2 Determine the projection on this convex C.
- 3 Resume the previous question with $H = \ell^2(\mathbb{N}, \mathbb{C})$

Exercise 8 Let E be the inner product space of complex sequences $(u_n)_{n \in \mathbb{N}}$ satisfying :

 $\exists N \in \mathbb{N}, \forall n \ge N, \quad u_n = 0$

with the inner product $\langle u/v \rangle = \sum_{n=0}^{+\infty} u_n \overline{v_n}$.

- 1 Show that the mapping $\varphi(u) : E \mapsto C$ defined by $\varphi(u) = \sum_{n=1}^{+\infty} \frac{u_n}{n}$ is a linear continuous map on E.
- 2 Is there an element $a \in E$ such that for all u in E, we have $\varphi(u) = \langle u/a \rangle$?
- 3 What can we deduce about E?

Exercise 9 $(H, \langle ., \rangle)$ is a Hilbert space. F a closed subspace. Demonstrate that:

- 1- $||P_F|| = 1$ 2- $Ker \ P_F = F^{\perp}$
- 3- $F = \{x \in H, P_F(x) = x\}$

Exercise 10 For all $N \in \mathbb{N}$, note by M_N the vector subspace of $\ell^2(\mathbb{N}, \mathbb{C})$ formed with sequences $(x_n)_{(n \in N)}$ such that $\sum_{n=0}^{N} x_n = 0$.

1 - Show that the mapping $(x_n)_n \mapsto \sum_{k=0}^N x_k$ is linear continuous from $\ell^2(\mathbb{N}, \mathbb{C})$ to \mathbb{C} . What can we deduce about M_N ? Conclude that $\ell^2(\mathbb{N}, \mathbb{C}) = M_N \oplus M_N^{\perp}$.

2 - Let be $E = \{(y_n)_n \text{ such that, for all } 0 \le i \le j \le N, \text{ we have } y_i = y_j \text{ and } y_n = 0 \text{ for } n > N\}$

3 - Show that the orthogonal M_N^{\perp} of M_N contains E.

4 - Show that $M_N^{\perp} = E$ (note that, for $0 \le i \le j \le N$, the sequence (x_n) such that $x_i = 1, x_j = -1$ and $x_n = 0$ if $n \ne i$ and $n \ne j$ belongs to M_N

Exercise 11 Find the Fourier coefficients of the following functions:

 $(\mathbf{a})f\left(t\right) = t$

(b) $*f(t) = t^2$

(c) $* \cos at \ t \in \mathbb{R} \setminus \mathbb{Z}$ (Z is the set of integers)

(d) f(t) = |t|

Use the Parseval equality to prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ Find $\sum_{n=1}^{\infty} \frac{1}{n^4}$

Exercise12 Let f(x) be a differentiable 2π -periodic function in $[-\pi, \pi]$ with derivative $f'(x) \in L_2[-\pi, \pi]$. Let f_n for $n \in \mathbb{Z}$ be the Fourier coeffi-

cients of f(x) in the system $\{e^{inx}/\sqrt{2\pi}\}$. Prove that $\sum_{n\in\mathbb{Z}}|f_n|<\infty$.