Case	Tip Condition (x = L)	Temperature Distribution θ/θ_b	Fin Heat Transfer Rate q_f	
А	Convection: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$	$M\frac{\sinh mL + (h/mk)\cosh mL}{\cosh mL + (h/mk)\sinh mL}$	
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	M tanh mL	
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)}{\sinh mL}$	$M\frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$	
D	Infinite fin $(L \to \infty)$: $\theta(L) = 0$	e^{-mx}	М	
$\theta \equiv T - T_{a}$ $\theta_{b} = \theta(0)$	$m^{2} \equiv hP/kA_{c}$ $= T_{b} - T_{\infty} \qquad M \equiv \sqrt{hPkA_{c}}\theta_{b}$			

Table 1 Temperature distributions and heat rates for fins of uniform cross section

Table 2 Hyperbolic Functions

x	sinh x	$\cosh x$	tanh x	x	sinh x	$\cosh x$	tanh x
0.00	0.0000	1.0000	0.00000	2.00	3.6269	3.7622	0.96403
0.10	0.1002	1.0050	0.09967	2.10	4.0219	4.1443	0.97045
0.20	0.2013	1.0201	0.19738	2.20	4.4571	4.5679	0.97574
0.30	0.3045	1.0453	0.29131	2.30	4.9370	5.0372	0.98010
0.40	0.4108	1.0811	0.37995	2.40	5.4662	5.5569	0.98367
0.50	0.5211	1.1276	0.46212	2.50	6.0502	6.1323	0.98661
0.60	0.6367	1.1855	0.53705	2.60	6.6947	6.7690	0.98903
0.70	0.7586	1.2552	0.60437	2.70	7.4063	7.4735	0.99101
0.80	0.8881	1.3374	0.66404	2.80	8.1919	8.2527	0.99263
0.90	1.0265	1.4331	0.71630	2.90	9.0596	9.1146	0.99396
1.00	1.1752	1.5431	0.76159	3.00	10.018	10.068	0.99505
1.10	1.3356	1.6685	0.80050	3.50	16.543	16.573	0.99818
1.20	1.5095	1.8107	0.83365	4.00	27.290	27.308	0.99933
1.30	1.6984	1.9709	0.86172	4.50	45.003	45.014	0.99975
1.40	1.9043	2.1509	0.88535	5.00	74.203	74.210	0.99991
1.50	2.1293	2.3524	0.90515	6.00	201.71	201.72	0.99999
1.60	2.3756	2.5775	0.92167	7.00	548.32	548.32	1.0000
1.70	2.6456	2.8283	0.93541	8.00	1490.5	1490.5	1.0000
1.80	2.9422	3.1075	0.94681	9.00	4051.5	4051.5	1.0000
1.90	3.2682	3.4177	0.95624	10.000	11013	11013	1.0000

The hyperbolic functions are defined as

$$\sinh x = \frac{1}{2}(e^x - e^{-x})$$
 $\cosh x = \frac{1}{2}(e^x + e^{-x})$ $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh x}{\cosh x}$

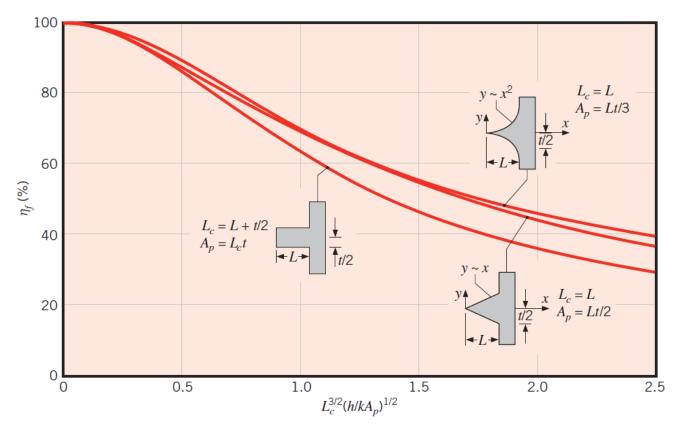


Figure 1 Efficiency of straight fins (rectangular, triangular, and parabolic profiles).

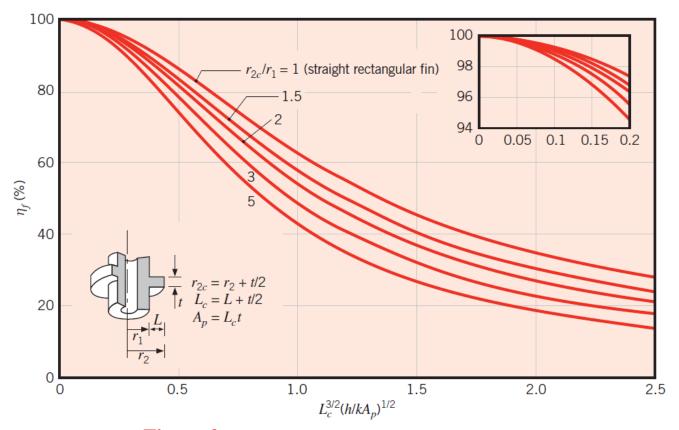
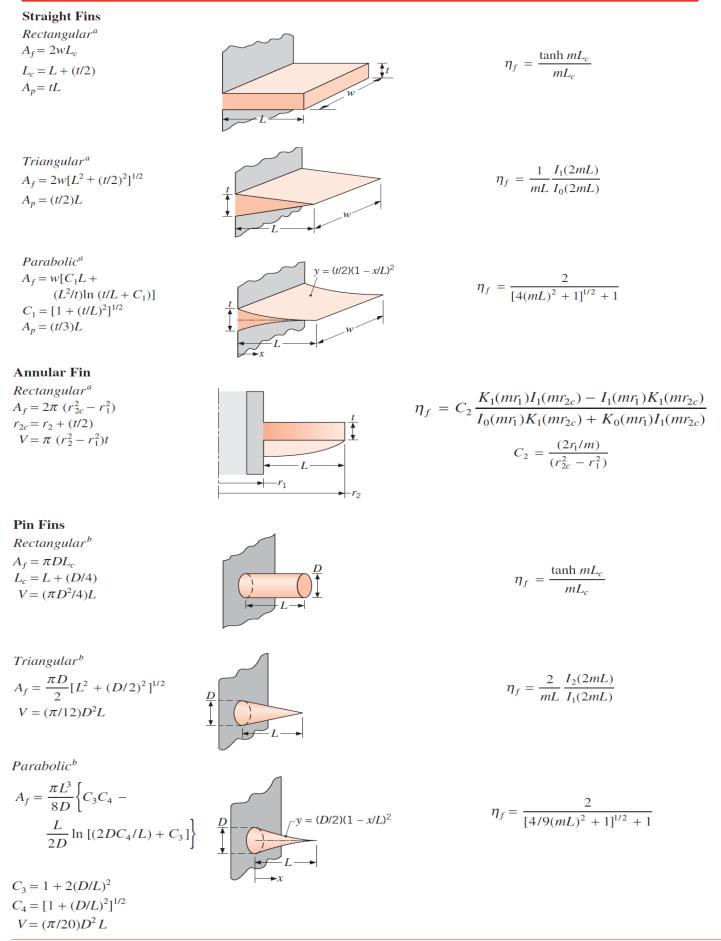



Figure 2 Efficiency of annular fins of rectangular profile.

Table 3 Efficiency of common fin shapes

 ${}^{a}m = (2h/kt)^{1/2}.$ ${}^{b}m = (4h/kD)^{1/2}.$