TD 2 Régulation métabolique 3^{ème} Biochimie

I.QCM

1- Le cycle e krebs est impliquée dans :

- A. Régulation de la glycolyse
- **B.** Dégradation du pyruvate en CO₂ et H₂0
- C. Synthèse de malonyl CoA à partir d'acétyl CoA
- **D.** Au niveau du foie dans le renouvellement de l'aspartate à partir d'oxaloacétate
- **E.** Dans la régulation du catabolisme des acides gras saturés à nombre impair d'atomes de carbones
- 2-On prépare des mitochondries de myocytes plus des quantités équimolaires d'acide aspartique et de pyruvate en excès. On observe une faible consommation d'oxygène. Si on ajoute une très faible quantité d'acide a-cétoglutarique, la consommation d'oxygène est très stimulée. On peut expliquer cette dernière observation par les éléments suivants :
 - A- le cycle de Krebs fournit de grandes quantités de transporteurs oxydés
 - **B** une transamination est intervenue
 - C- l'oxaloacétate fait rentrer l'acétyl-CoA dans le cycle de Krebs
 - E- le cycle de Krebs consomme de l'oxygène
- 3-Soit la séquence suivante du cycle de Krebs : succinyl-CoA→ acide malique
 - **A-** il y a production de 2 FADH₂
 - **B-** il y a consommation de 2 H₂O
 - C- il y a synthèse de 1 ATP par phosphorylation liée au substrat
 - **D-** il y a synthèse de 3 ATP par phosphorylation oxydative
 - E- il y a synthèse de 2 ATP par phosphorylation oxydative

4-La voie des pentoses phosphates

- A- fournit un pouvoir réducteur au cytoplasme
- B- fournit un pouvoir oxydant au cytoplasme
- C- convertit des hexoses en pentoses
- **D** convertit des pentoses en hexoses
- E-permet indirectement la synthèse des lipides

TD 2 Régulation métabolique 3^{ème} Biochimie

5-Dans les étapes de la voie des pentoses phosphates

A- il y a réduction du glucose-6-P

B- il y a une décarboxylation

 ${f C}$ -il y a des transferts intermoléculaires de groupements d'atomes mettant en jeu des molécules en ${f C}_2$

 ${f D}$ -il y a des transferts intermoléculaires de groupements d'atomes mettant en jeu des molécules en C_5

6-La trancétolase catalyse les réactions suivantes :

```
A- xylulose-5-P+ ribose-5-P → glycéraldéhyde-3-P + sédoheptulose-7-P
```

B- sédoheptulose-7-P + glycéraldéhyde-3-P → érythrose-4-P + fructose-6-P

C -xylulose-5-P + érythrose-4-P → glycéraldéhyde-3-P+ fructose-6-P

D -glycéraldehyde-3-P+ sédoheptulose-7-P → xylulose-5-P + ribose-5-P.

E -érythrose-4-P + fructose-6-P → sédoheptulose-7-P + glycéraldéhyde-3-P

7-Un déficit en glucose 6-phosphate déshydrogénase

A-réduit la quantité de glutathion oxydé dans l'hématie

B- est en cas d'hérédité influencée par le sexe

C- est en cas d'hérédité autosomale

8- Au cours du fonctionnement de la chaîne respiratoire

A-les électrons sont échangés entre couples rédox dont les potentiels sont croissants

B-le coenzyme Q échange des électrons entre le complexe I et le complexe II

C-O₂ est réduit

D -H₂O est produit

E-il y a transfert de protons à travers les complexes I, II, III et IV

F-la force protomotrice fait passer les protons de la matrice mitochondriale vers l'espace intermembranaire

G-l'oxygène est l'accepteur final des électrons