CHAPTER III : Redox Reactions

<u>1. Definitions</u>

1.1. An Oxidant (Oxidizing Agent)

An **oxidant**, is a chemical species that **gains one or more electrons** in a reaction, causing another species to lose electrons. When an oxidant gains electrons, it gets **reduced**.

Example

 $Cu^{2+} + 2e - \rightarrow Cu$

1.2. A Reductant (Reducing Agent)

A reductor, is a a chemical species that is capable of **donating one or more electrons** in a reaction, When a reductant loses electrons, it gets **oxidized**.

Example

 $Al \rightarrow Al^{3+} + 3e$ -

1.3. Redox Couple (Oxidant / Reductant)

A redox couple consists of an oxidant and a reductant that correspond to each other in a half-reaction. The species Ox and Red form a redox couple, written as Ox/Red.

 $Oxidant + ne \rightarrow Reductant$

Examples

Fe³⁺ / Fe²⁺ Couple

$$Fe^{3+} + e^{-} \leftrightarrow Fe^{2-}$$

In this redox couple :

-Fe³⁺ (ferric ion) is the **oxidant** (it can gain an electron to become Fe^{2+}).

-Fe²⁺ (ferrous ion) is the reductant (it can donate an electron to become Fe³⁺).

2. Redox Reaction

A redox reaction (oxidation-reduction reaction) involves **two redox couples**, where electrons are transferred between an **oxidant** from one redox couple and a **reductant** from another redox couple. The reaction can be written as :

 $Ox_1 + Red_2 \leftrightarrow Red_1 + Ox_2$

Example 1

 $Zn \rightarrow Zn^{2+} + 2e^-$ (Oxidation Half-Reaction) $Cu^{2+} + 2e^- \rightarrow Cu$ (Reduction Half-Reaction) $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ (Redox Reaction) **Note :** In a **basic** medium, **OH**⁻ ions are used to balance **oxygen** and **H**₂**O** molecules to balance **hydrogen**, whereas in an **acidic** medium, **H**₂**O** molecules balance oxygen and **H**⁺ ions balance hydrogen.

3. Oxidation Number (Oxidation State)

The **oxidation number** (**NO**) (also called the **oxidation state**) of an atom in a compound is the **number of electrons** an atom has gained or lost compared to its neutral (uncombined) state.

a. The oxidation number (NO) of an atom in its **free** or **elemental state** is always **zero**. This is because, there is no loss or gain of electrons in the neutral atom in this state.

Example

H, O, Cu, Co \rightarrow NO = 0

b. When two atoms of the **same element** combine to form a molecule, and no charge is present on the molecule (neutral combination), the **oxidation number** of each atom in the molecule is **zero**.

Example

F₂, Br₂, Cl₂ \rightarrow NO = 0

c. The **oxidation number** (**NO**) of an atom in a **monoatomic ion** is equal to the **charge** of the ion.

Example

 $Cl^{-} \rightarrow NO (Cl) = -I ; Fe^{3+} \rightarrow NO (Fe) = +III.$

d. In a **neutral molecule**, the **sum of the oxidation numbers** of all the atoms within the molecule is always **zero**.

Example

 NH_3 : $\Sigma NO = N.O(N) + 3 \times N.O(H) = 0$

e. Oxygen is the most **electronegative** element after fluorine. In most compound, the oxidation number (NO) of oxygen is -2. However, there are exceptions depending on the specific bonding environment of oxygen.

Example

F2O \rightarrow NO (F) = -I and NO (O) =+II

H2O2 \rightarrow NO (H) = +I and NO(O) = -I

f. The oxidation number (NO) of hydrogen varies depending on the compounds it forms.

Example

 H_2 : NO (H) = 0.

Hydrogen in compounds with non-metals $(H_2O, HCl) : NO (H) = +1$.

Hydrides (NaH, KH, LiH) : NO (H) = -1 (hydrogen is bonded to metals that are more electropositive).

g. For a **polyatomic ion**, the **sum of the oxidation numbers (NO)** of all the atoms within the ion is equal to the **total charge** of the ion.

Example

Sulfate ion $(SO_4^{2^-})$: $\Sigma NO = NO(S) + 4 \times NO(O) = -2 \rightarrow NO(S) = +6$

4.