C.U. Abdelhafid Boussouf-mila

Master 2 : Mathématiques appliquées

2021-2022

Responsable : A. Bazeniar

Série TD N°02

Optimisation non linéaire sous contraintes

Exercice 1

Soient Soit $f, g: \mathbb{R}^2 \to \mathbb{R}$ définies sur :

$$f(x,y) = y$$

s.c. $g(x,y) = y^3 - x^2 = 0$

- 1. Calculer le minimum de f et le point (x, y) où ce minimum est atteint.
- 2. Existe-t-il λ tel que $\nabla f(x^*, y^*) = \lambda \nabla g(x^*, y^*)$?
- 3. Pourquoi ne peut-on pas appliquer le théorème des multiplicateurs de Lagrange?

Exercice 2 (Supplémentaire)

Soit le problème (P) dans \mathbb{R}^2 :

$$f(x,y) = -x$$

s.c. $g_1(x,y) = x + y \le 1$.
 $g_2(x,y) = x^2 \le y$

- 1. Vérifier la condition de qualification des contraintes.
- 2. Déterminer les points critiques.

Exercice 3

Quels sont les points de la sphère S les plus proches et les plus éloignés du point A = (3,1,-1) Tel que :

$$S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 4\}.$$

Exercice 4

Soient la fonction objectif:

$$f(x,y) = 5x^2 + 6y^2 - xy$$

s.c
$$g(x,y) = x + 2y - 24 = 0.$$

- 1. Trouver le point stationnaire de f sous contrainte g.
- 2. Préciser s'il s'agit d'un maximum, d'un minimum.

Exercice 5 Soit le problème (P) dans \mathbb{R}^3 :

$$f(x,y) = x + 2y + 3z$$

s.c. $h(x,y) = x^2 + y^2 + z^2 = 1$.
 $g(x,y) = x + y + z \le 0$

- 1. Vérifier la condition de qualification des contraintes.
- 2. Résoudre le système de Lagrange.

Exercice 6 (supplémentaire)

Soit le problème (P) dans \mathbb{R}^2 :

s.c.
$$f(x) = (x_1 - 2)^2 + x_2^2 + x_3^2$$

 $g(x) = x_1^2 + 2x_2^2 + 3x_2^2 = 1$

- 1. Vérifier la condition de qualification des contraintes.
- 2. Déterminer l'extrémum du problème (p).