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This document is supplemented for the first chapter lecture notes (Analyses 1).

Exercise 01:

Proof that the set of rational numbers, @, is a field:

To prove that the set of rational numbers, Q, forms a field, we must verify that it satisfies the field axioms for
addition (+) and multiplication (-).

Given:

Let a = %, b= %, and c = ¥ be elements of Q, where p, q,r,s,u,v € Z (integers) and ¢, s,v # 0.

1. Closure under Addition and Multiplication:

We must show that if a,b € Q, then a+b€ Q and a-b € Q.

Addition: N
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Since ps + rq € Z and qs # 0, it follows that a + b € Q.
Multiplication:

p r _pr

a-b==--=—.

q s as

Since pr € Z and ¢s # 0, it follows that a - b € Q.
Therefore, Q is closed under both addition and multiplication.
2. Associativity of Addition and Multiplication:
For all a,b,c € Q:
Addition:
(a+bd)+c=a+ (b+c).

Multiplication:
(@a-b)-c=a-(b-c).

These properties follow directly from the associativity of integer operations.
3. Commutativity of Addition and Multiplication:
For all a,b € Q:
Addition:
a+b=>b+a.

Multiplication:
a-b=>b-a.

These properties follow directly from the commutativity of integer operations.
4. Existence of Additive and Multiplicative Identities:
Additive Identity: The element 0 € Q (i.e., %) serves as the additive identity, as

a+0=a, VYaecQ.
Multiplicative Identity: The element 1 € Q (i.e., %) serves as the multiplicative identity, as
a-1=a, VaeQ.

5. Existence of Additive and Multiplicative Inverses:



Additive Inverse: For each a = % € Q, the additive inverse is —a = _Tp, and

- “p 0
a—|—(—a):£+—p:u:f:0.
q q q q

Multiplicative Inverse: For each a = g € Q with p # 0, the multiplicative inverse is a~! = }%, and
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a-a 1.

Thus, every nonzero element in Q has a multiplicative inverse.
6. Distributivity of Multiplication over Addition:
We need to show that for all a,b,c € Q,

a-(b+ec)=(a-b)+(a-c).

Leta:%’,bzﬂ andc= Y%

s PR
Calculate (b + ¢ ):
r U 70+ Uus
b+c=-+4+—-= .
s v SvU

Calculate a - (b+ ¢):
p rv+us  p(rv+us)  pru+pus

a-(b+c)== =
q sv qsv qsv
Calculate (a-b) + (a - ¢):
First,a-b=2.L = BT,
Next,a~cza EZQT
Adding these, we get
T U U+ pu- S TV 4+ pus
(@b +@c)=2L 4220 pus _ PrOTPus

qs qu qsv qsv

Since a - (b+¢) = (a-b) + (a - ¢), the distributive property holds in Q.
Since Q satisfies all the field axioms, we conclude that Q is a field with respect to addition and multiplication.

Exercise 02:

Exercise 03:
A)
1. For all real numbers x and y, we have:
2ef =[(z+y)+ -y = 22| <|z+yl+ ]z -yl

2yl =z +y) + (y— o) = 2y < |z +y[+ |z —y]

Therefore,
|| + |yl < |z +yl+ |z —yl,Vo,y €R.



2. Vx,y > 0, we have z + y < z + 2,/xy + y; because 2,/Ty > 0, which leads to z + y < (Vx + \/33)2
we findy/z +y < Vo + /Y.

3. For all z,y > 0 such that z = (x —y) +y and (z —y) + vy < |z — y| + y, so we have

Vo< /lz—yl+y.
Using the result in question 2, we find /z < m + /¥ , this implies
Vo =y <]z -yl (1)
Similarly, we have \/y < \/m, and using the question 2, we get \/y < m + v/z, which implies:
Vi =y > =z -yl (2)
Combining equations (1) and (2), we get —/|z — y| < /z— /g < |z —y|, which implies |/ — /7| < \/]z — y].
B)
1. For any x € R, we have
[z] <@ < [2] +1,
which implies
[Zl+m<z4+m<[z]+m+1,

for all m € Z. On the other hand,
[x4+m]|<z+m<[zr+m]+1,

since [x 4+ m] is the largest integer less then = + m, we have

[z] +m <[z +m]

Similarly, [« +m] + 1 is the smallest integer greater than or equal to x + m, so

[+ml+1<[z]+m+1
Combining these, we get
[ +m] <[z]+m
From [z] + m < [z 4+ m] and [z + m] < [z] + m, we conclude [z + m] = [z] + m.

2. Ifax<y,then [z] <z <y <[y|+1,s0 [z] <y <[y]+1. As [y]is the greatest integer less than or equal to y
and [z] is an integer, we have [z] < [y].

oz <z <[r]+1land [y] <y <[yl+1imply [x]+ [y] <z +y < [z] + [y] + 2. Since [z + y] is the greatest
integer less than or equal to = + y, we get

[#] + [y] < [z +y). 3)
Also, [z + y] + 1 is the smallest integer greater than = + y, so [z +y] + 1 < [z] + [y] + 2, leading to
[z +y] < [z] + [yl + 1. (4)

From (3) and (4), we find
2]+ [y] < [z +y] < [z] + [y] + 1.

Exercise 04:

A)
1. Let x € Q and y ¢ Q. We assume by contradiction that z = 2 4+ y € Q, which implies y = z — z € Q, leading

to a contradiction.

2. Look at the solution for exercise 7 from the solutions of tutorial exercises set 0.

B) We have:
4a—4, ifa>2

2
x*=2a+2a—2 =
| | {4 if1<a<?2

)



Exercise 05:

1.
A Maj(A) | Min(4) |supA |inf A | maxA | minA
[—a,a] | [a,+o0[ |]— o0, —q] a -« a —«
[—a,af | [a,+oo] | ] — o0, —a] a - ? —a
|—a,a] | [a,+o0[ | | — 00, —a a —a a 3
| —a,al | [a,+o0] | | — 00, —a] a - ? ?

2. A= [—\/5, \/5[, (4th case in the above table).
3. A:{%,WhereneN*}. For all n € N* :7121<:>n—120:>"771 >0and 0 € A, hence min A = inf A = 0.

(a) Vn e N*, =1 <1,
(b) Ve >0,3n. e N*:1—¢ < =1,

€

supAzl(:){

Let us discuss these two conditions:

(a) YneN*,n—1<n& =1 <1,
(b) Lete >0, 1 —e< 2l osl-c<l-Lloe>lon>1

Then the condition related to n and e, suggesting that n. can be taken as E] + 1.

Exercise 06:

B ={|z —y|;(z,y) € A%}.

1. If A is a bounded subset, then sup A and inf A exist. Let sup A = M and inf A = m. For all (x,y) in A%:
let us take, m < ax < M and m <y < M, which leads to — M < —y<-m=>—-(M-m)<z—y<M-m

Slr—yl <M -—m.

Therefore, M — m is an upper bound for B.
2. We have

If sup A = M, then for all € > 0, there exists € A such that M — % <z (5)

and
If inf A = m, then for all £ > 0, there exists y € A such that y < m + % (6)

Combining (5) and (6), we get:

Ve > 0,3(z,y) € A2 (M —m)—ec<a—y

Since z — y < |z — y|, we have:

Ve > 0,3(x,y) € A%, (M —m) — e < |z — y|
Consequently, sup B =M —m =sup A — inf A.

Exercise 07:
1. (a) Let us show that: sup(AU B) < max(sup A,sup B). We have on one hand:

AcC(AUB)
and
BcC (AUB)



This implies:
sup A < sup(AU B)
and
sup B < sup(A U B)

Therefore,
max(sup A, sup B) < sup(A U B)

On the other hand, if z € AU B, then:
reA
or
r€B

This leads to:
x<supA

or

r <supB

So, < max(sup A, sup B), implying that max(sup A4, sup B) is an upper bound for AU B. Since sup(4A U B)

is the smallest upper bound for AU B, we have
sup(A U B) < max(sup A4, sup B)

Combining (7) and (8), we establish the equality.

(b) Let us show that: inf(A U B) < min(inf A,inf B). On one hand:

AC(AUB)
and
BC (AUB)

This implies:
inf A > inf(AU B)
and
inf B > inf(AU B)

Therefore,
min(inf A,inf B) > inf(AU B)

On the other hand, if z € AU B, then:
zeA
or
reB

This leads to:
z>1inf A

or
x> inf B

(8)

So, > min(inf A4, inf B), implying that min(inf A, inf B) is a lower bound for AU B. Since inf(A U B) is the

largest lower bound for A U B, we have

inf(A U B) > min(inf A, inf B)

Combining (9) and (10), we establish the equality.

(10)



2. If AN B # 0, then, let us prove that:
(@ 7
sup(A N B) < min(sup A, sup B)

(ANnB)C A
and
(AnB)C B

This implies:
sup(ANB) <sup A
and
sup(ANB) < sup B

Hence, sup(A N B) < min(sup A, sup B).
(v 7
inf(A N B) > max(inf A, inf B)
Let us take
(ANB)C A

and
(AnB)C B

This implies:
inf(ANB) >inf A
and
inf(ANB) > inf B

Thus, inf(A N B) > max(inf A, inf B).

3. (a) Let us show that:
sup(4 + B) < sup A +sup B

Given:
A:x < Mj... (%1
supA =My = e S Ma...(x1)
Ve>0,3x € A: My —§ <x..(x2)
B:y<Msp..
supB = Mp — vy € y < Mp...(x3)
Ve >0,y € B: Mp — § <y..(x4)
Then:

(1) + (%3) = V2 € A+ B:2< My + Mp
(#2) + (x4) = Ve > 0,32 € A+ B: (Ma+ Mp) —e< 2

Therefore, sup(A + B) = supA + supB.
(b) Now, let us show that:
inf(A + B) = inf A + inf B

Given:
Vee A:mg <az..(xx1)

infA=my —
Ve>0,dz€A:x<ma+5..(x%2)

Yy € B:mp < y...(x % 3)

infB=mp —
Ve>0,dy € B:y<mp+5...(xx4)



Then:
(xx1)+ (x%x3) = Vz€e A+ B:ma+mp<z

(x%2)+ (x%x4) = Ve >0,Iz€ A+ B:z2<(ma+mp)+¢
Therefore, inf(A + B) = infA + infB.

4. (a) Let us show that:
,

sup(—A) = —inf A

e VreA:zx>infA =— —x < —inf A. Hence, —inf A is an upper bound for —A. Since sup(—A) is the
smallest upper bound for — A, we have

sup(—A) < —inf A (11)

o V(—z) € (—A) : —x <sup(—A) = x > —sup(—A). Hence, —sup(—A) is a lower bound for A. Since
inf A is the largest lower bound for A, we have

inf A > —sup(—A) (12)

From (11) and (12), we establish the equality.
(b) Let us show that:
inf(—A) Z_ sup A

eVre A:z <supA = —z > —supA. Hence, —sup A is a lower bound for —A. Since inf(—A)is the

largest lower bound for —A, we have
inf(—A) > —sup 4 (13)

o V(—z) € (—A) : —x > inf(—A) <= x < —inf(—A). Hence, —inf A is an upper bound for A. Since
sup A is the smallest upper bound for A, we have sup A < —inf(—A), which leads

—sup A > inf(—A) (14)
From (13) and (14), we establish the equality.
Exercise 08:
1 A= {g”ﬁ,n e N}
e Let us show that: inf A — 1. We have
3n+1

>1

VneN:3n>2n <= 3n+1>2n+1 <— >
n+1

So, 1 is a lower bound for A. Note: 1 € A for n = 0. Thus, min A =inf A = 1.
e sup A z % We have

3n+1 <§
2n+1 2

VneN:2<3 = n+2<6n+3 <—

Therefore, % is an upper bound for A; but 2 5 ¢ A. The verification of the supremum characterization

leads to: For any € > 0, there exists (?) n. € N such that s—e< ngﬂ We have: § —e< g’zfﬁ, which

implies (2 —&)(2n. +1) < (3n. +1) = (3 —2¢)(2n. + 1) < (6ne + 2), then (6n5 +3—4den. — 2e) <
(6n. +2) = 1< 2e(2n: +1). , 132

Choose ne = [172] + 1. Thus, supA = 3, but 3 ¢ A, so max A does not exist.

2.B:{% nEN*}

n27



e sup B £ 9. We have Vn € N*

n>1 1
—
n?>1 1

Hence, 2 is an upper bound for B. Note: 2 € B for n = 1. Thus, max B = sup B = 2.
e inf B < 0. We have

‘Hﬁ\’*

== 2> —+

1
n?

AVANAY]
S|

n

1 1
VnEN*:7+f2>O
non

So, 0 is a lower bound for B. For any € > 0, there exists (?) n. € N* such that ni + # < e.

Let us take € > 0, then we have Vn e N* : n+ 1 < 2n < ”n—tl < i—’;,whichleadsto %Jri < % So

7L2
for L + # < g, it is sufficient to take: % <e = % < n. Choose n. = E] + 1. Thus, inf B = 0, but

n
0 ¢ B, so min B does not exist.

3. C={e ™, neN}

e supC ] (as e™™ approaches 0 for increasing n).
ForallneN: 0<n < —n<0 < e " <1, then 1is an upper bound for C.
Note that 1 € C for n =0, so maxC =supC = 1.

o infC < 0 (trivial since e~"

For all n € N: e > 0, so 0 is a lower bound for C.

For any e > 0, there exists (?) n. € N such that e™ " < e.

Let € >0, then e™" <& <= —n <In(e) <= —In(e) < n. It suffices to take n. = [ —In(e)] + 1.
Therefore, inf C' = 0, but 0 ¢ C so min C does not exist.

is always positive)

4. D={L -2,neN}

° supD;—l
Foralln e N*: 1 <n <= 1<n? < #Sl <— #—QS—LSO—1isanupperboundforD.

Note that —1 € D for n =1, so max D =sup D = —1.

o infD =2
Foralln € N*: 0 < ; <= —2 < % —2, s0 —2 is a lower bound for D.
For any € > 0, there exists (?) n. € N* such that -z —2 <& — 2.
Let5>0,thenn—12—2<8—2 — n—12‘<5 — é<n2 =
Ne = [%] + 1.
Therefore, inf D = —2, but —2 ¢ D so min D does not exist.

1

7 <m since n € N, it suffices to take



