Analysis I: Solutions of Tutorial Exercise Sheet 1

Hocine RANDJI

2024-2025

This document is supplemented for the first chapter lecture notes (Analyses 1).

Exercise 01:

Proof that the set of rational numbers, \mathbb{Q} , is a field:

To prove that the set of rational numbers, \mathbb{Q} , forms a field, we must verify that it satisfies the field axioms for addition (+) and multiplication (·).

Given:

Let $a = \frac{p}{q}, b = \frac{r}{s}$, and $c = \frac{u}{v}$ be elements of \mathbb{Q} , where $p, q, r, s, u, v \in \mathbb{Z}$ (integers) and $q, s, v \neq 0$.

1. Closure under Addition and Multiplication:

We must show that if $a, b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$ and $a \cdot b \in \mathbb{Q}$.

Addition:

$$a+b = \frac{p}{q} + \frac{r}{s} = \frac{ps+rq}{qs}.$$

Since $ps + rq \in \mathbb{Z}$ and $qs \neq 0$, it follows that $a + b \in \mathbb{Q}$. Multiplication:

$$a \cdot b = \frac{p}{q} \cdot \frac{r}{s} = \frac{pr}{qs}$$

Since $pr \in \mathbb{Z}$ and $qs \neq 0$, it follows that $a \cdot b \in \mathbb{Q}$.

Therefore, $\mathbb Q$ is closed under both addition and multiplication.

2. Associativity of Addition and Multiplication: For all $a, b, c \in \mathbb{Q}$:

Addition:

(a+b) + c = a + (b+c).

Multiplication:

 $(a \cdot b) \cdot c = a \cdot (b \cdot c).$

These properties follow directly from the associativity of integer operations. 3. Commutativity of Addition and Multiplication: For all $a, b \in \mathbb{Q}$: Addition: a + b = b + a.

Multiplication:

$$a \cdot b = b \cdot a$$

These properties follow directly from the commutativity of integer operations.

4. Existence of Additive and Multiplicative Identities:

Additive Identity: The element $0 \in \mathbb{Q}$ (i.e., $\frac{0}{1}$) serves as the additive identity, as

$$a+0=a, \quad \forall a \in \mathbb{Q}.$$

Multiplicative Identity: The element $1 \in \mathbb{Q}$ (i.e., $\frac{1}{1}$) serves as the multiplicative identity, as

$$a \cdot 1 = a, \quad \forall a \in \mathbb{Q}.$$

5. Existence of Additive and Multiplicative Inverses:

Additive Inverse: For each $a = \frac{p}{q} \in \mathbb{Q}$, the additive inverse is $-a = \frac{-p}{q}$, and

$$a + (-a) = \frac{p}{q} + \frac{-p}{q} = \frac{p-p}{q} = \frac{0}{q} = 0.$$

Multiplicative Inverse: For each $a = \frac{p}{q} \in \mathbb{Q}$ with $p \neq 0$, the multiplicative inverse is $a^{-1} = \frac{q}{p}$, and

$$a \cdot a^{-1} = \frac{p}{q} \cdot \frac{q}{p} = \frac{pq}{pq} = 1$$

Thus, every nonzero element in \mathbb{Q} has a multiplicative inverse. 6. Distributivity of Multiplication over Addition: We need to show that for all $a, b, c \in \mathbb{Q}$,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

Let $a = \frac{p}{q}$, $b = \frac{r}{s}$, and $c = \frac{u}{v}$: Calculate (b + c):

$$b + c = \frac{r}{s} + \frac{u}{v} = \frac{rv + us}{sv}.$$

Calculate $a \cdot (b+c)$:

$$a \cdot (b+c) = \frac{p}{q} \cdot \frac{rv+us}{sv} = \frac{p(rv+us)}{qsv} = \frac{prv+pus}{qsv}$$

Calculate $(a \cdot b) + (a \cdot c)$: First, $a \cdot b = \frac{p}{q} \cdot \frac{r}{s} = \frac{pr}{qs}$. Next, $a \cdot c = \frac{p}{q} \cdot \frac{u}{v} = \frac{pu}{qv}$. Adding these, we get

$$(a \cdot b) + (a \cdot c) = \frac{pr}{qs} + \frac{pu}{qv} = \frac{pr \cdot v + pu \cdot s}{qsv} = \frac{prv + pus}{qsv}$$

Since $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$, the distributive property holds in \mathbb{Q} . Since \mathbb{Q} satisfies all the field axioms, we conclude that \mathbb{Q} is a field with respect to addition and multiplication.

Exercise 02:

(1)
$$S =] - \infty, 2[$$

(2) $S = [-2, \infty[$
(3) $S =] - \infty, -\sqrt{3}] \cup [\sqrt{3}, \infty[$
(4) $S = [-\sqrt{2}, \sqrt{2}]$
(5) $S =] - \infty, -\sqrt{2}] \cup [\sqrt{2}, \infty[$

(6) $S =] - \infty, -\sqrt[3]{3}]$

Exercise 03:

A)

1. For all real numbers x and y, we have:

$$2|x| = |(x+y) + (x-y)| \implies 2|x| \le |x+y| + |x-y|$$
$$2|y| = |(x+y) + (y-x)| \implies 2|y| \le |x+y| + |x-y|$$

Therefore,

$$|x| + |y| \le |x+y| + |x-y|, \forall x, y \in \mathbb{R}$$

- 2. $\forall x, y \ge 0$, we have $x + y \le x + 2\sqrt{xy} + y$; because $2\sqrt{xy} \ge 0$, which leads to $x + y \le (\sqrt{x} + \sqrt{y})^2$ we find $\sqrt{x + y} \le \sqrt{x} + \sqrt{y}$.
- 3. For all $x, y \ge 0$ such that x = (x y) + y and $(x y) + y \le |x y| + y$, so we have

$$\sqrt{x} \le \sqrt{|x-y|+y}.$$

Using the result in question 2, we find $\sqrt{x} \leq \sqrt{|x-y|} + \sqrt{y}$, this implies

$$\sqrt{x} - \sqrt{y} \le \sqrt{|x - y|}.\tag{1}$$

Similarly, we have $\sqrt{y} \le \sqrt{|y-x|+x}$, and using the question 2, we get $\sqrt{y} \le \sqrt{|x-y|} + \sqrt{x}$, which implies:

$$\sqrt{x} - \sqrt{y} \ge -\sqrt{|x - y|} \tag{2}$$

Combining equations (1) and (2), we get $-\sqrt{|x-y|} \le \sqrt{x} - \sqrt{y} \le |x-y|$, which implies $|\sqrt{x} - \sqrt{y}| \le \sqrt{|x-y|}$. B)

1. For any $x \in \mathbb{R}$, we have

which implies

$$[x] + m \le x + m \le [x] + m + 1$$

 $[x] \le x \le [x] + 1,$

for all $m \in \mathbb{Z}$. On the other hand,

$$[x+m] \le x+m \le [x+m] + 1,$$

since [x + m] is the largest integer less then x + m, we have

$$[x] + m \le [x + m]$$

Similarly, [x + m] + 1 is the smallest integer greater than or equal to x + m, so

$$[x+m] + 1 \le [x] + m + 1$$

Combining these, we get

$$[x+m] \le [x] + n$$

From $[x] + m \le [x + m]$ and $[x + m] \le [x] + m$, we conclude [x + m] = [x] + m.

- 2. If $x \le y$, then $[x] \le x \le y < [y] + 1$, so $[x] \le y < [y] + 1$. As [y] is the greatest integer less than or equal to y and [x] is an integer, we have $[x] \le [y]$.
- 3. $[x] \le x < [x] + 1$ and $[y] \le y < [y] + 1$ imply $[x] + [y] \le x + y < [x] + [y] + 2$. Since [x + y] is the greatest integer less than or equal to x + y, we get

$$[x] + [y] \le [x + y]. \tag{3}$$

Also, [x + y] + 1 is the smallest integer greater than x + y, so $[x + y] + 1 \le [x] + [y] + 2$, leading to

$$[x+y] \le [x] + [y] + 1. \tag{4}$$

From (3) and (4), we find

$$[x] + [y] \le [x + y] \le [x] + [y] + 1.$$

Exercise 04:

 \mathbf{A})

- 1. Let $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$. We assume by contradiction that $z = x + y \in \mathbb{Q}$, which implies $y = z x \in \mathbb{Q}$, leading to a contradiction.
- 2. Look at the solution for exercise 7 from the solutions of tutorial exercises set 0.

B) We have:

$$x^{2} = 2a + 2|a - 2| = \begin{cases} 4a - 4, & \text{if } a \ge 2\\ 4, & \text{if } 1 \le a \le 2 \end{cases}$$

Exercise 05:

1.

A	$\operatorname{Maj}(A)$	$\operatorname{Min}(A)$	$\sup A$	$\inf A$	$\max A$	$\min A$
$[-\alpha, \alpha]$	$[\alpha, +\infty[$	$]-\infty,-\alpha]$	α	$-\alpha$	α	$-\alpha$
$[-\alpha, \alpha[$	$[\alpha, +\infty[$	$]-\infty,-\alpha]$	α	$-\alpha$	∄	$-\alpha$
$[-\alpha, \alpha]$	$[\alpha, +\infty[$	$]-\infty,-\alpha]$	α	$-\alpha$	α	∄
$-\alpha, \alpha[$	$[\alpha, +\infty[$	$]-\infty,-\alpha]$	α	$-\alpha$	∄	∄

2. $A = [-\sqrt{2}, \sqrt{2}[, (4\text{th case in the above table}).$

3. $A = \{\frac{n-1}{n}, \text{ where } n \in \mathbb{N}^*\}$. For all $n \in \mathbb{N}^* : n \ge 1 \Leftrightarrow n-1 \ge 0 \Rightarrow \frac{n-1}{n} \ge 0$ and $0 \in A$, hence $\min A = \inf A = 0$.

$$\sup A = 1 \Leftrightarrow \begin{cases} (\mathbf{a}) \ \forall n \in \mathbb{N}^*, \frac{n-1}{n} \leq 1. \\ (\mathbf{b}) \ \forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^* : 1 - \varepsilon < \frac{n_{\varepsilon} - 1}{n_{\varepsilon}}. \end{cases}$$

Let us discuss these two conditions:

 $\begin{array}{ll} \text{(a)} & \forall n \in \mathbb{N}^*, n-1 \leq n \Leftrightarrow \frac{n-1}{n} \leq 1. \\ \text{(b)} & \text{Let } \varepsilon > 0, \ 1-\varepsilon < \frac{n-1}{n} \Leftrightarrow 1-\varepsilon < 1-\frac{1}{n} \Leftrightarrow \varepsilon > \frac{1}{n} \Leftrightarrow n > \frac{1}{\varepsilon} \end{array}$

Then the condition related to n and ε , suggesting that n_{ε} can be taken as $\left[\frac{1}{\varepsilon}\right] + 1$.

Exercise 06:

$$B = \{ |x - y|; (x, y) \in A^2 \}.$$

1. If A is a bounded subset, then $\sup A$ and $\inf A$ exist. Let $\sup A = M$ and $\inf A = m$. For all (x, y) in A^2 : let us take, $m \le x \le M$ and $m \le y \le M$, which leads to $-M \le -y \le -m \Rightarrow -(M-m) \le x - y \le M - m$

 $\Leftrightarrow |x - y| \le M - m.$

Therefore, M - m is an upper bound for B. 2. We have

If
$$\sup A = M$$
, then for all $\varepsilon > 0$, there exists $x \in A$ such that $M - \frac{\varepsilon}{2} < x$ (5)

and

If
$$\inf A = m$$
, then for all $\varepsilon > 0$, there exists $y \in A$ such that $y < m + \frac{\varepsilon}{2}$ (6)

Combining (5) and (6), we get:

$$\forall \varepsilon > 0, \exists (x, y) \in A^2, (M - m) - \varepsilon < x - y$$

Since $x - y \leq |x - y|$, we have:

$$\forall \varepsilon > 0, \exists (x, y) \in A^2, (M - m) - \varepsilon < |x - y|$$

Consequently, $\sup B = M - m = \sup A - \inf A$.

Exercise 07:

1. (a) Let us show that: $\sup(A \cup B) \stackrel{?}{=} \max(\sup A, \sup B)$. We have on one hand:

$$\begin{cases} A \subset (A \cup B) \\ \text{and} \\ B \subset (A \cup B) \end{cases}$$

This implies:

 $\begin{cases} \sup A \le \sup(A \cup B) \\ \text{and} \\ \sup B \le \sup(A \cup B) \end{cases}$

Therefore,

$$\max(\sup A, \sup B) \le \sup(A \cup B) \tag{7}$$

On the other hand, if $x \in A \cup B$, then:

This leads to:

$$\begin{cases} x \le \sup A \\ \text{or} \\ x \le \sup B \end{cases}$$

 $\begin{cases} x \in A \\ \text{or} \\ x \in B \end{cases}$

So, $x \leq \max(\sup A, \sup B)$, implying that $\max(\sup A, \sup B)$ is an upper bound for $A \cup B$. Since $\sup(A \cup B)$ is the smallest upper bound for $A \cup B$, we have

$$\sup(A \cup B) \le \max(\sup A, \sup B) \tag{8}$$

Combining (7) and (8), we establish the equality.

(b) Let us show that: $\inf(A \cup B) \stackrel{?}{=} \min(\inf A, \inf B)$. On one hand:

$$\begin{cases} A \subset (A \cup B) \\ \text{and} \\ B \subset (A \cup B) \end{cases}$$

This implies:

$$\begin{cases} \inf A \ge \inf(A \cup B) \\ \text{and} \\ \inf B \ge \inf(A \cup B) \end{cases}$$

Therefore,

$$\min(\inf A, \inf B) \ge \inf(A \cup B) \tag{9}$$

On the other hand, if $x \in A \cup B$, then:

$$\begin{cases} x \in A \\ \text{or} \\ x \in B \end{cases}$$
$$\begin{cases} x \ge \inf A \\ \text{or} \\ x \ge \inf B \end{cases}$$

This leads to:

So, $x \ge \min(\inf A, \inf B)$, implying that $\min(\inf A, \inf B)$ is a lower bound for $A \cup B$. Since $\inf(A \cup B)$ is the largest lower bound for $A \cup B$, we have

$$\inf(A \cup B) \ge \min(\inf A, \inf B) \tag{10}$$

Combining (9) and (10), we establish the equality.

2. If $A \cap B \neq \emptyset$, then, let us prove that:

(a)

$$\sup(A \cap B) \stackrel{?}{\leq} \min(\sup A, \sup B)$$

$$\begin{cases} (A \cap B) \subset A \\ \text{and} \\ (A \cap B) \subset B \end{cases}$$

This implies:

$$\begin{cases} \sup(A \cap B) \le \sup A \\ \text{and} \\ \sup(A \cap B) \le \sup B \end{cases}$$

Hence, $\sup(A \cap B) \le \min(\sup A, \sup B)$. (b)

$$\inf(A \cap B) \stackrel{?}{\geq} \max(\inf A, \inf B)$$

Let us take

$$\begin{cases} (A \cap B) \subset A \\ \text{and} \\ (A \cap B) \subset B \end{cases}$$

This implies:

$$\begin{cases} \inf(A \cap B) \ge \inf A\\ \text{and}\\ \inf(A \cap B) \ge \inf B \end{cases}$$

Thus, $\inf(A \cap B) \ge \max(\inf A, \inf B)$.

3. (a) Let us show that:

$$\sup(A+B) \stackrel{?}{=} \sup A + \sup B$$

Given:

$$\begin{split} \sup A &= M_A \implies \begin{cases} \forall x \in A : x \leq M_A \dots (*1) \\ \forall \varepsilon > 0, \exists x \in A : M_A - \frac{\varepsilon}{2} < x \dots (*2) \end{cases} \\ \sup B &= M_B \implies \begin{cases} \forall y \in B : y \leq M_B \dots (*3) \\ \forall \varepsilon > 0, \exists y \in B : M_B - \frac{\varepsilon}{2} < y \dots (*4) \end{cases} \end{split}$$

Then:

$$\begin{aligned} (*1) + (*3) \implies \forall z \in A + B : z \le M_A + M_B \\ (*2) + (*4) \implies \forall \varepsilon > 0, \exists z \in A + B : (M_A + M_B) - \varepsilon < z \end{aligned}$$

Therefore, $\sup(A + B) = \sup A + \sup B$.

(b) Now, let us show that:

$$\inf(A+B) \stackrel{?}{=} \inf A + \inf B$$

Given:

$$\inf A = m_A \implies \begin{cases} \forall x \in A : m_A \le x...(**1) \\ \forall \varepsilon > 0, \exists x \in A : x < m_A + \frac{\varepsilon}{2}...(**2) \end{cases}$$
$$\inf B = m_B \implies \begin{cases} \forall y \in B : m_B \le y...(**3) \\ \forall \varepsilon > 0, \exists y \in B : y < m_B + \frac{\varepsilon}{2}...(**4) \end{cases}$$

,

Then:

$$(**1) + (**3) \implies \forall z \in A + B : m_A + m_B \le z$$
$$(**2) + (**4) \implies \forall \varepsilon > 0, \exists z \in A + B : z < (m_A + m_B) + \varepsilon$$

Therefore, $\inf(A + B) = \inf A + \inf B$.

4. (a) Let us show that:

$$\sup(-A) \stackrel{?}{=} -\inf A$$

• $\forall x \in A : x \ge \inf A \implies -x \le -\inf A$. Hence, $-\inf A$ is an upper bound for -A. Since $\sup(-A)$ is the smallest upper bound for -A, we have

$$\sup(-A) \le -\inf A \tag{11}$$

• $\forall (-x) \in (-A) : -x \leq \sup(-A) \implies x \geq -\sup(-A)$. Hence, $-\sup(-A)$ is a lower bound for A. Since inf A is the largest lower bound for A, we have

$$\inf A \ge -\sup(-A) \tag{12}$$

From (11) and (12), we establish the equality.

(b) Let us show that:

$$\inf(-A) \stackrel{?}{=} -\sup A$$

• $\forall x \in A : x \leq \sup A \implies -x \geq -\sup A$. Hence, $-\sup A$ is a lower bound for -A. Since $\inf(-A)$ is the largest lower bound for -A, we have

$$\inf(-A) \ge -\sup A \tag{13}$$

• $\forall (-x) \in (-A) : -x \ge \inf(-A) \iff x \le -\inf(-A)$. Hence, $-\inf A$ is an upper bound for A. Since $\sup A$ is the smallest upper bound for A, we have $\sup A \le -\inf(-A)$, which leads

$$-\sup A \ge \inf(-A) \tag{14}$$

From (13) and (14), we establish the equality.

Exercise 08:

- 1. $A = \left\{ \frac{3n+1}{2n+1}, n \in \mathbb{N} \right\}$
 - Let us show that: $\inf A \stackrel{?}{=} 1$. We have

$$\forall n \in \mathbb{N} : 3n \ge 2n \iff 3n+1 \ge 2n+1 \iff \frac{3n+1}{2n+1} \ge 1$$

So, 1 is a lower bound for A. Note: $1 \in A$ for n = 0. Thus, $\min A = \inf A = 1$.

• $\sup A \stackrel{?}{=} \frac{3}{2}$. We have

$$\forall n \in \mathbb{N} : 2 < 3 \implies 6n+2 < 6n+3 \iff \frac{3n+1}{2n+1} < \frac{3}{2}$$

Therefore, $\frac{3}{2}$ is an upper bound for A; but $\frac{3}{2} \notin A$. The verification of the supremum characterization leads to: For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}$ such that $\frac{3}{2} - \varepsilon < \frac{3n_{\varepsilon}+1}{2n_{\varepsilon}+1}$. We have: $\frac{3}{2} - \varepsilon < \frac{3n_{\varepsilon}+1}{2n_{\varepsilon}+1}$, which implies $(\frac{3}{2} - \varepsilon)(2n_{\varepsilon} + 1) < (3n_{\varepsilon} + 1) \implies (3 - 2\varepsilon)(2n_{\varepsilon} + 1) < (6n_{\varepsilon} + 2)$, then $(6n_{\varepsilon} + 3 - 4\varepsilon n_{\varepsilon} - 2\varepsilon) < (6n_{\varepsilon} + 2) \implies 1 < 2\varepsilon(2n_{\varepsilon} + 1)$. Hence, $\frac{1-2\varepsilon}{4\varepsilon} < n_{\varepsilon}$. Choose $n_{\varepsilon} = \left[\frac{1-2\varepsilon}{4\varepsilon}\right] + 1$. Thus, $\sup A = \frac{3}{2}$, but $\frac{3}{2} \notin A$, so max A does not exist.

2.
$$B = \left\{ \frac{1}{n} + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}$$

• sup $B \stackrel{?}{=} 2$. We have $\forall n \in \mathbb{N}^*$:

$$\begin{cases} n \ge 1 \\ n^2 \ge 1 \end{cases} \implies \begin{cases} 1 \ge \frac{1}{n} \\ 1 \ge \frac{1}{n^2} \end{cases} \implies 2 \ge \frac{1}{n} + \frac{1}{n^2} \end{cases}$$

Hence, 2 is an upper bound for B. Note: $2 \in B$ for n = 1. Thus, max $B = \sup B = 2$.

• $\inf B \stackrel{?}{=} 0$. We have

$$\forall n \in \mathbb{N}^*: \frac{1}{n} + \frac{1}{n^2} > 0$$

So, 0 is a lower bound for *B*. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}^*$ such that $\frac{1}{n_{\varepsilon}} + \frac{1}{n_{\varepsilon}^2} < \varepsilon$. Let us take $\varepsilon > 0$, then we have $\forall n \in \mathbb{N}^* : n + 1 \le 2n \iff \frac{n+1}{n^2} \le \frac{2n}{n^2}$, which leads to $\frac{1}{n} + \frac{1}{n^2} \le \frac{2}{n}$. So for $\frac{1}{n} + \frac{1}{n^2} \le \varepsilon$, it is sufficient to take: $\frac{2}{n} < \varepsilon \iff \frac{2}{\varepsilon} < n$. Choose $n_{\varepsilon} = \begin{bmatrix} \frac{2}{\varepsilon} \end{bmatrix} + 1$. Thus, $\inf B = 0$, but $0 \notin B$, so min *B* does not exist.

3.
$$C = \{e^{-n}, n \in \mathbb{N}\}$$

- $\sup C \stackrel{?}{=} 1$ (as e^{-n} approaches 0 for increasing n). For all $n \in \mathbb{N}$: $0 \le n \iff -n \le 0 \iff e^{-n} \le 1$, then 1 is an upper bound for C. Note that $1 \in C$ for n = 0, so max $C = \sup C = 1$.
- inf $C \stackrel{?}{=} 0$ (trivial since e^{-n} is always positive) For all $n \in \mathbb{N}$: $e^{-n} > 0$, so 0 is a lower bound for C. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}$ such that $e^{-n_{\varepsilon}} < \varepsilon$. Let $\varepsilon > 0$, then $e^{-n} < \varepsilon \iff -n < \ln(\varepsilon) \iff -\ln(\varepsilon) < n$. It suffices to take $n_{\varepsilon} = [-\ln(\varepsilon)] + 1$. Therefore, $\inf C = 0$, but $0 \notin C$ so $\min C$ does not exist.

4.
$$D = \{\frac{1}{n^2} - 2, n \in \mathbb{N}^*\}$$

• $\sup D \stackrel{?}{=} -1$

For all $n \in \mathbb{N}^*$: $1 \le n \iff 1 \le n^2 \iff \frac{1}{n^2} \le 1 \iff \frac{1}{n^2} - 2 \le -1$, so -1 is an upper bound for D. Note that $-1 \in D$ for n = 1, so max $D = \sup D = -1$.

• $\inf D \stackrel{?}{=} -2$

For all $n \in \mathbb{N}^*$: $0 < \frac{1}{n^2} \iff -2 < \frac{1}{n^2} - 2$, so -2 is a lower bound for D. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}^*$ such that $\frac{1}{n^2} - 2 < \varepsilon - 2$. Let $\varepsilon > 0$, then $\frac{1}{n^2} - 2 < \varepsilon - 2 \iff \frac{1}{n^2} < \varepsilon \iff \frac{1}{\varepsilon} < n^2 \iff \frac{1}{\sqrt{\varepsilon}} < n$; since $n \in \mathbb{N}$, it suffices to take $n_{\varepsilon} = \left[\frac{1}{\sqrt{\varepsilon}}\right] + 1$.

Therefore, $\inf D = -2$, but $-2 \notin D$ so $\min D$ does not exist.