Chapter 02: Sequences of Real Numbers

By Hocine RANDJI
randji.h@centre-univ-mila.dz
Abdelhafid Boussouf University Center- Mila- Algeria
Institute of Science and Technology

First Year Engineering
Module: Analysis 1
Semester 1

Academic Year: 2024/2025

Plan

- References
- Definitions
- Monotony of a Real Sequence
- Real Sequences and Order Relation
- Subsequences
- Convergence of a Sequence
- Divergent Sequences
- Operations on Convergent Sequences
- Adjacet Sequences
- Cauchy's Convergence Criterion
- Recursive Sequences
- Computation of Limits in 'Python'

References

بالعربية:

- بابا حامد، بن حبيب، التحيل 1 تذكير بالدروس و تمارين محلولة عدد . (الفصل الثاني) . 300 ترجمة الحفيظ مقران، ديوان المطبوعات الحامعية (الفصل الثاني) . In English:
 - Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 3).
 - Terence Tao, Analysis 1 (3rd edition), Springer (2016).

En français:

- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 3).
- Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016), (Chapitre 2).

Definitions:

• **Definitions**: A real sequence $(u_n)_{n\in\mathbb{N}}$ is defined by a function u from the set of natural numbers \mathbb{N} to the real numbers \mathbb{R} .

$$u: \mathbb{N} \to \mathbb{R}$$
 (1)

$$n\mapsto u(n)=u_n\tag{2}$$

In this chapter we define $\mathbb{N} := \{0, 1, 2, ..\}$

- u_n is called **the general term** of the sequence $(u_n)_{n\in\mathbb{N}}$.
- u_0 is called **the first term** of the sequence.
- $(u_n)_{n\in\mathbb{N}}$ is called **an arithmetic sequence** if there exists $a\in\mathbb{R}$ such that $u_{n+1}-u_n=a$. In this case, we have $u_n=u_0+na$ for all $n\in\mathbb{N}$.
- $(u_n)_{n\in\mathbb{N}}$ is called a **geometric sequence** if there exists $a\in\mathbb{R}$ such that $\frac{u_{n+1}}{u_n}=a$. In this case, we have $u_n=u_0\cdot a^n$ for all $n\in\mathbb{N}$.

Monotony of a Real Sequence

Definition: Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $(u_n)_{n\in\mathbb{N}}$ is called increasing (or strictly increasing) if: $\forall n\in\mathbb{N}, u_{n+1}-u_n\geq 0$ (or $\forall n\in\mathbb{N}, u_{n+1}-u_n>0$).
- $(u_n)_{n\in\mathbb{N}}$ is called decreasing (or strictly decreasing) if: $\forall n\in\mathbb{N}, u_{n+1}-u_n\leq 0$ (or $\forall n\in\mathbb{N}, u_{n+1}-u_n<0$).
- $(u_n)_{n\in\mathbb{N}}$ is called monotonic if it is either increasing or decreasing.
- (u_n)_{n∈N} is called strictly monotonic if it is either strictly increasing or strictly decreasing.

Examples

- 1. For $u_n = n^2$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing. In fact, $u_{n+1} u_n = (n+1)^2 n^2 = 2n+1 \ge 0$ for all $n \in \mathbb{N}$.
- 2. For $u_n = \frac{1}{n!}$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing. In fact, $u_{n+1} u_n = -\frac{n}{(n+1)!} \le 0$ for all $n \in \mathbb{N}$.

Real Sequences and Order Relation

Definition Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $(u_n)_{n\in\mathbb{N}}$ is called upper bounded if: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
- $(u_n)_{n\in\mathbb{N}}$ is called lower bounded if: $\exists m\in\mathbb{R}, \forall n\in\mathbb{N}, m\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ is called bounded if it is both upper bounded and lower bounded, or if there exists P>0 such that $|u_n|\leq P$.

Examples

- If $\forall n \in \mathbb{N}$, $u_n = \sin(n)$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded. Indeed, $|u_n| \le 1$ for all $n \in \mathbb{N}$.
- ② The sequence $(u_n)_{n\in\mathbb{N}}$; where $u_n=n^3$ is bounded below by 0 but it is not bounded above.

Subsequences

Definition: Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence and φ be a strictly increasing function from \mathbb{N} to \mathbb{N} . The sequence $(u_{\varphi(n)})_{n\in\mathbb{N}}$ is called a subsequence or an extracted sequence of $(u_n)_{n\in\mathbb{N}}$.

Subsequences

Example: Let $(u_n)_{n\in\mathbb{N}^*}$ be a real sequence defined by $u_n=(-1)^n\frac{1}{n}$. We can extract two subsequences $(u_{2n})_{n\in\mathbb{N}^*}$ and $(u_{2n+1})_{n\in\mathbb{N}}$ such that:

$$u_{2n}=\frac{1}{2n}, \forall n\in\mathbb{N}^*$$

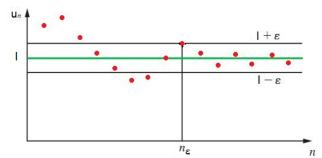
$$u_{2n+1} = -\frac{1}{2n+1}$$

Convergence of a Sequence:

Definition Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence. We say that $(u_n)_{n\in\mathbb{N}}$ is convergent if there exists a real number $l\in\mathbb{R}$ such that for every $\varepsilon>0$, there exists $n_\varepsilon\in\mathbb{N}$ such that for all $n\in\mathbb{N}$ with $n\geq n_\varepsilon$, implies $|u_n-l|<\varepsilon$. We denote this as:

$$\lim_{n\to+\infty}u_n=I$$

and we say that I is the limit of $(u_n)_{n\in\mathbb{N}}$.



Example Consider the sequence $(u_n)_{n\in\mathbb{N}}$ defined by $u_n=1-\frac{2}{5n}$. Let's show that $(u_n)_{n\in\mathbb{N}}$ converges to 1.

$$|u_n-1|<\varepsilon \Leftrightarrow \frac{2}{5n}<\varepsilon \Leftrightarrow n>\frac{2}{5\varepsilon}$$

So, it suffices to take $n_{\varepsilon} = \left\lceil \frac{2}{5\varepsilon} \right\rceil + 1$.

Theorem If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence, then its limit is unique.

Proof: (homework)

Remark: A sequence is said to be divergent if it tends towards infinity, or if it has multiple different limits.

Divergent Sequences

Definition: Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $\lim_{n\to+\infty} u_n = +\infty$ if and only if $\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_A \Rightarrow u_n > A$.
- $\lim_{n \to +\infty} u_n = -\infty$ if and only if $\forall B < 0, \exists n_B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_B \Rightarrow u_n < B$.

Proposition: If $(u_n)_{n\in\mathbb{N}}$ is a divergent sequence such that $\lim_{n\to+\infty}u_n=+\infty$ (resp. $\lim_{n\to+\infty}u_n=-\infty$), and $(v_n)_{n\in\mathbb{N}}$ is a sequence such that $u_n\leq v_n$ (resp. $u_n\geq v_n$) for all $n\in\mathbb{N}$, then the sequence $(v_n)_{n\in\mathbb{N}}$ is divergent and we have $\lim_{n\to+\infty}v_n=+\infty$ (resp. $\lim_{n\to+\infty}v_n=-\infty$).

Proof: Indeed, for every A>0, there exists $n_A\in\mathbb{N}$ such that for all $n\in\mathbb{N}$, $n\geq n_A\Rightarrow u_n>A$ and $u_n\leq v_n$ for all $n\in\mathbb{N}$. Therefore, for every A>0, there exists $n_A\in\mathbb{N}$ such that for all $n\in\mathbb{N}$, $n\geq n_A\Rightarrow v_n>A$, which implies $\lim_{n\to+\infty}v_n=+\infty$.

Proposition Every convergent sequence is bounded.

Remarks:

- By contrapositive, an unbounded sequence is divergent.
- ② The converse is not always true; a bounded sequence is not always convergent.

Example Let $u_n = (-1)^n$ for all $n \in \mathbb{N}$. Then the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded because for all $n \in \mathbb{N}$, $|(-1)^n| \le 1$. However, $(u_n)_{n \in \mathbb{N}}$ is divergent because it has two different limits:

$$\lim_{n \to +\infty} u_n = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$$

Proposition If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence, then all its subsequences converge to the same limit.

Remark: By contrapositive, it is sufficient to find two subsequences that do not converge to the same limit in order to conclude that a sequence is divergent.

Operations on Convergent Sequences:

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two sequences converging respectively to the limits l_1 and l_2 , and let $\lambda\in\mathbb{R}$. Then the sequences $(u_n+v_n)_{n\in\mathbb{N}}$, $(\lambda u_n)_{n\in\mathbb{N}}$, $(u_nv_n)_{n\in\mathbb{N}}$, $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$, and $(|u_n|)_{n\in\mathbb{N}}$ also converge, and we have:

Remarks:

- The sum of two divergent sequences can be convergent.
- The absolute value of a divergent sequence can be convergent.

Examples:

- **1** Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be defined as: $u_n = 2n$ and $v_n = -2n + e^{-n}$ for all $n \in \mathbb{N}$. Both $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are divergent. However, the sequence $(u_n + v_n)_{n \in \mathbb{N}}$ is convergent because $u_n + v_n = e^{-n}$ for all $n \in \mathbb{N}$.
- ② Let $u_n = (-1)^n$ for all $n \in \mathbb{N}$. The sequence $(u_n)_{n \in \mathbb{N}}$ is divergent. However, we have $|u_n| = 1$ for all $n \in \mathbb{N}$, hence the sequence $(|u_n|)_{n \in \mathbb{N}}$ is convergent.

Properties:

- If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence such that $u_n > 0$ for all $n \in \mathbb{N}$ (resp. $u_n < 0$ for all $n \in \mathbb{N}$), then $\lim_{n \to +\infty} u_n \ge 0$ (resp. $\lim_{n \to +\infty} u_n \le 0$).
- ② If $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are two convergent sequences such that $u_n < v_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$.

Proof:

1. Since $u_n > 0$ for all $n \in \mathbb{N}$ and $l = \lim_{n \to +\infty} u_n$, we can show that l > 0.

By assuming the opposite I < 0. Let $\varepsilon = \frac{|I|}{2} > 0$, then there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_{\varepsilon} \Rightarrow |u_n - I| < \frac{|I|}{2}$, $I - \frac{|I|}{2} < u_n < I + \frac{|I|}{2} < 0$, which is absurd because $u_n > 0$ for all $n \in \mathbb{N}$.

2. Since $u_n < v_n$ for all $n \in \mathbb{N}$, let $l_1 = \lim_{n \to +\infty} u_n$ and $l_2 = \lim_{n \to +\infty} v_n$. Suppose by contradiction that $l_2 < l_1$, and let $\varepsilon = \frac{l_1 - l_2}{2} > 0$. Then there exists $n_\varepsilon \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_\varepsilon \Rightarrow |u_n - l_1| < \frac{l_1 - l_2}{2}$, which implies $\frac{l_1 + l_2}{2} < u_n < \frac{3l_1 - l_2}{2}$ (1). Also, there exists $n_\varepsilon' \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_\varepsilon' \Rightarrow |v_n - l_2| < \frac{l_1 - l_2}{2}$, leading to $\frac{3l_2 - l_1}{2} < v_n < \frac{l_1 + l_2}{2}$ (2).

Let $n''_{\varepsilon} = \max(n_{\varepsilon}, n'_{\varepsilon})$. Combining (1) and (2), we have $\exists n''_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \geq n''_{\varepsilon} \Rightarrow v_n < \frac{l_1 + l_2}{2} < u_n$.

Therefore, $v_n < u_n$, which is absurd because $u_n < v_n$ for all $n \in \mathbb{N}$. Alternatively, we can view this property as a direct consequence of the first one, where we simply set $w_n = v_n - u_n$. Since $w_n > 0$ for all $n \in \mathbb{N}$, we have $\lim_{n \to +\infty} w_n \ge 0$, implying $\lim_{n \to +\infty} (v_n - u_n) \ge 0$, which further leads to $\lim_{n \to +\infty} v_n \ge \lim_{n \to +\infty} u_n$.

Theorem: Any increasing (resp. decreasing) and bounded above (resp. bounded below) sequence converges to its supremum (resp. infimum).

Proof: Let $(u_n)_{n\in\mathbb{N}}$ be an increasing and bounded above sequence. Then, for all $n\in\mathbb{N}$, $u_n\leq u_{n+1}$, and there exists $M\in\mathbb{R}$ such that $u_n\leq M$. Let $E=\{u_n,n\in\mathbb{N}\}$ and $u=\sup(E)$. According to the characterization of the supremum, we have, for every $\varepsilon>0$, there exists $p\in\mathbb{N}$ such that $u-\varepsilon< u_p$.

Since (u_n) is increasing, for all $n \in \mathbb{N}$ such that $n \ge p$, we have $u_p \le u_n$.

Now, since $u_n \leq u$, we get $u - \varepsilon < u_p \leq u_n \leq u < u + \varepsilon$. Hence, for every $\varepsilon > 0$, there exists $p \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq p$, we have $|u_n - u| < \varepsilon$. Therefore, $\lim_{n \to +\infty} u_n = \sup(E)$.

Theorem: Let $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, and $(w_n)_{n\in\mathbb{N}}$ be three real sequences such that for all $n \ge n_0$, $u_n \le v_n \le w_n$, and $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} w_n = I$, then $\lim_{n\to+\infty} v_n = I$. **Proof:** Let $\varepsilon > 0$. There exists $n_1 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_1$, we have $|u_n - I| < \varepsilon$ which implies $I - \varepsilon < u_n < I + \varepsilon$. Similarly, there exists $n_2 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_2$, we have $|w_n - I| < \varepsilon$ which implies $I - \varepsilon < w_n < I + \varepsilon$. Let $n_3 = \max(n_0, n_1, n_2)$. Then, for all $n \in \mathbb{N}$ such that $n \ge n_3$, we have $1 - \varepsilon < u_n < v_n < w_n < 1 + \varepsilon$, which leads to $1-\varepsilon < v_n < 1+\varepsilon$ or $|v_n-1| < \varepsilon$. Therefore, for every $\varepsilon > 0$, there exists $n_3 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n > n_3$, we have $|v_n - I| < \varepsilon$, which concludes that $\lim_{n \to +\infty} v_n = I$.

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences such that $\lim_{n\to+\infty}u_n=0$ and $(v_n)_{n\in\mathbb{N}}$ is bounded. Then $\lim_{n\to+\infty}u_n\cdot v_n=0$.

Proof: Since $(v_n)_{n\in\mathbb{N}}$ is bounded, there exists M>0 such that $|v_n|\leq M$ for all $n\in\mathbb{N}$. Also, $\lim_{n\to+\infty}u_n=0$ implies that for every $\varepsilon>0$, there exists $n_\varepsilon\in\mathbb{N}$ such that for all $n\in\mathbb{N}$ such that $n\geq n_\varepsilon$, we have $|u_n|<\frac{\varepsilon}{M}$. This leads to $|u_n\cdot v_n|=|u_n|\cdot |v_n|<\frac{\varepsilon}{M}\cdot M=\varepsilon$. Thus, for every $\varepsilon>0$, there exists $n_\varepsilon\in\mathbb{N}$ such that for all $n\in\mathbb{N}$ such that $n\geq n_\varepsilon$, we have $|u_n\cdot v_n|<\varepsilon$, which means $\lim_{n\to+\infty}u_n\cdot v_n=0$.

Theorem (Bolzano-Weierstrass): Every bounded real sequence $(u_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

Adjacent Sequences:

Definition: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences, such that $(u_n)_{n\in\mathbb{N}}$ is increasing and $(v_n)_{n\in\mathbb{N}}$ is decreasing. The sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are called **adjacent** if $\lim_{n\to+\infty}(u_n-v_n)=0$.

Theorem: Two adjacent real sequences converge to the same limit. **Example:** The sequences $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ defined by $u_n=\sum_{k=1}^n\frac{1}{k!}$ and $v_n=u_n+\frac{1}{n!}$ respectively, converge to the same limit since they are adjacent. Indeed, $(u_n)_{n\in\mathbb{N}^*}$ is increasing, $(v_n)_{n\in\mathbb{N}^*}$ is decreasing, and we have $\lim_{n\to+\infty}(v_n-u_n)=\lim_{n\to+\infty}\frac{1}{n!}=0$.

Cauchy's Convergence Criterion

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ be a convergent sequence. Then, $(u_n)_{n\in\mathbb{N}}$ possesses the following property known as the Cauchy criterion. For any $\varepsilon > 0$, there exists an integer N such that for every pair of integers p and q greater than N, we have $|u_p - u_q| < \varepsilon$.

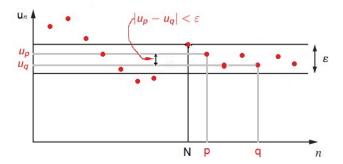


Figure:

proof:

Let / be the limit of the sequence. We have

$$|u_p - u_q| = |u_p - I + I - u_q| \le |u_p - I| + |I - u_q|$$

The sequence $(u_n)_{n\in\mathbb{N}}$ converges to I. Therefore, by definition, for any $\varepsilon>0$, we can associate an integer N such that for all p>N, we have $|u_p-I|<\frac{\varepsilon}{2}$, and for all integer q>N, we have $|u_q-I|<\frac{\varepsilon}{2}$. For any pair of integers p and q greater than N,

$$|u_p - u_q| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
. \square

This brings us to the following definition:

Definition: We say that a sequence $(u_n)_{n\in\mathbb{N}}$ is a Cauchy sequence if it possesses the following property, known as the Cauchy criterion: For any $\varepsilon > 0$, there exists a natural number N such that for any pair of integers p and q greater than N, we have

$$|u_p - u_q| < \varepsilon$$

or, in short,

$$\forall \varepsilon > 0, \exists N, \forall p, \forall q, \quad (p, q > N \Rightarrow |u_p - u_q| < \varepsilon)$$

Example: Show that $(u_n)_{n\in\mathbb{N}}$ is a Cauchy sequence where $u_n=\frac{1}{n}$. We have $|u_p-u_q|=|\frac{1}{p}-\frac{1}{q}|\leq |\frac{1}{p}|+|-\frac{1}{q}|$. Let us take

$$\begin{cases} q > N \\ p > N \end{cases} \implies \begin{cases} \frac{1}{q} < \frac{1}{N} \\ \frac{1}{p} < \frac{1}{N} \end{cases}$$

Thus, $|u_p - u_q| \le \frac{1}{q} + \frac{1}{p} < \frac{1}{N} + \frac{1}{N}$.

So that $|u_p - u_q| < \varepsilon$, it suffices that $\frac{2}{N} < \varepsilon$. And so it suffices to take:

$$N = \left[\frac{2}{\varepsilon}\right] + 1$$

Recursive Sequences

Definition

Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be a function. We call a recursive sequence a sequence (u_n) for $n \in \mathbb{N}$ defined by $u_0 \in D$ and the relation

$$\forall n \in \mathbb{N} : u_{n+1} = f(u_n).$$

In the study of recursive sequences, we always assume that $f(D) \subseteq D$.

Example: Let $u_n = 2u_{n-1} + 1$ and $u_0 = 1$ we can compute the next terms:

$$u_1 = 2 \cdot 1 + 1 = 3$$

$$u_2 = 2 \cdot 3 + 1 = 7$$

Remarks:

- If the function f is increasing, then studying the monotony of $(u_n)_{n\in\mathbb{N}}$ is given by examining the sign of the difference $f(u_0)-u_0$.
 - If $f(u_0) u_0 > 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing.
 - If $f(u_0) u_0 < 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing.
- If the function f is monotonic and continuous on D, and the sequence $(u_n)_{n\in\mathbb{N}}$ converges to a limit $l\in D$, then its limit satisfies the equation f(l)=l.

Computation of Limits in 'Python'

In Python, you can; for example , use the 'sympy' library to perform the limit as $n\to\infty$ of the sequence defined by $u_n=f(n)$ is determined by the commands:

```
import sympy as sp
n= sp.symbols('n');
result_l= sp.limit((3*n-1)/(4*n+5), n,sp.oo)
print(result_1)
```

This code uses 'sympy' to define a symbolic variable 'n' and then uses 'sp.limit' to calculate the limit of the sequence (u_n) where: $u_n = \frac{3n-1}{4n+5}$. The function 'sp.oo' represents infinity in sympy. Using 'print(...)', the result will be:

If one takes $u_n = n$, then he can write the code:

```
import sympy as sp
n= sp.symbols('n')
result_2= sp.limit(n, n,sp.oo)
print(result_2)
```

and find the result (infinity):

00

Thanks