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e Definitions: A real sequence (u,)qen is defined by a function
u from the set of natural numbers N to the real numbers R .

uN—-R (1)
nw— u(n) = up, (2)

In this chapter we define N := {0, 1,2, ..}

e u, is called the general term of the sequence (u,)nen-

o up is called the first term of the sequence.

o (up)nen is called an arithmetic sequence if there exists a € R
such that u,.1 — u, = a. In this case, we have u, = ug + na
for all n € N.

o (up)nen is called a geometric sequence if there exists a € R
such that “L% = a. In this case, we have u, = ug - a" for all
n € N.



Monotony of a Real Sequence

Definition: Let (u,),en be a real sequence.
@ (un)nen is called increasing (or strictly increasing) if:
Vne N, upr1 —up >0 (or Vn € N, upy1 — up > 0).

@ (u,)nen is called decreasing (or strictly decreasing) if:
Vne N, upr1 — up <0 (or Vn € Ny upy1 — up <0).
@ (up)nen is called monotonic if it is either increasing or

decreasing.
@ (up)nen is called strictly monotonic if it is either strictly

increasing or strictly decreasing.



Examples

1. For u, = n?, n € N, the sequence (u,)nen is increasing. In fact,
Upi1 —Up=(n+1)2=n?>=2n+1>0forall n€N.

2. For u, = 1], n E N, the sequence (uy,)qen is decreasing. In fact,
Uptl — Up = (n+1)' <0 for all n € N.



Real Sequences and Order Relation

Definition Let (u,),cn be a real sequence.
@ (up)nen is called upper bounded if: IM € R,Vn € N, u, < M.
@ (up)nen is called lower bounded if: 3m e R,Vn e N, m < u,,.

@ (up)nen is called bounded if it is both upper bounded and
lower bounded, or if there exists P > 0 such that |u,| < P.



Q If Vn e N, u, = sin(n), then the sequence (u,),cn is bounded.
Indeed, |u,| <1 for all n € N.

© The sequence (u,)qcn; where u, = n® is bounded below by 0
but it is not bounded above.



Subsequences

Definition: Let (u,),cn be a real sequence and ¢ be a strictly
increasing function from N to N. The sequence (u,(,))nen is called
a subsequence or an extracted sequence of (u,),en.



Subsequences

Example: Let (u,),en+ be a real sequence defined by
Uy = (—1)”%. We can extract two subsequences (2,),en+ and
(U2n+1)ng\r such that:

1
Upp = —,Vn e N*
2n

Uny1 = _2n 1



Convergence of a Sequence:

Definition Let (u,)qen be a real sequence. We say that (u,) e is
convergent if there exists a real number / € R such that for every
e > 0, there exists n. € N such that for all n € N with n > n.,
implies |u, — /| < . We denote this as:

lim wu,=1
n—-+00

and we say that / is the limit of (u,),en.

Un & .
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Example Consider the sequence (u,),en defined by v, =1 — 53

Let's show that (u,),cn converges to 1.
(limpstooun=1) &
(Ve >0,3n. e NNVne N, n>n. = |u, — 1] < ¢)

C

2
lun—1ll<ee —<e&n>
5n

So, it suffices to take n, = [5—251 +1.



Theorem If (u,),cr is a convergent sequence, then its limit is
unique.
Proof: (homework)



*Remark:* A sequence is said to be divergent if it tends towards
infinity, or if it has multiple different limits.



Divergent Sequences

Definition: Let (u,),cn be a real sequence.
@ lim, 1o u, = 400 if and only if
VA>0,3dnp e NNVne N, n> ng = u, > A
@ lim, i~ u, = —oc if and only if
VB < 0,dng e N,Vne N, n> ng = u, < B.



Proposition: If (u,),en is a divergent sequence such that
liMmp—s 00 Up = +00 (resp. lim,_s oo up = —00), and (Vp)nen is a
sequence such that u, < v, (resp. u, > v,) for all n € N, then the

sequence (v,)qcn is divergent and we have lim,_, v, = 400

(resp. limp 00 vy = —00).



Proof: Indeed, for every A > 0, there exists ny € N such that for
alneN, n>nag= u, > Aand u, < v, for all n € N. Therefore,
for every A > 0, there exists ny € N such that for all n € N,

n> na = v, > A, which implies lim, 1 o v, = +00.



Proposition Every convergent sequence is bounded.
Remarks:

@ By contrapositive, an unbounded sequence is divergent.

@ The converse is not always true; a bounded sequence is not
always convergent.



Example Let v, = (—1)" for all n € N. Then the sequence
(un)nen is bounded because for all n € N, |(—1)"| < 1. However,
(un)nen is divergent because it has two different limits:

1 if nis even
—1 ifnisodd

limp, s oo Up =



Proposition If (u,),en is a convergent sequence, then all its
subsequences converge to the same limit.

Remark: By contrapositive, it is sufficient to find two
subsequences that do not converge to the same limit in order to
conclude that a sequence is divergent.



Operations on Convergent Sequences:

Theorem: Let (u,)qen and (vy)qen be two sequences converging
respectively to the limits /; and b, and let A € R. Then the
sequences (un + Vn)nENv ()‘Un)neNv (UnVn)neN: <%Z>n€N' and
(|un|)nen also converge, and we have:

Q limpioo(tn+vn)=h+h.

Q lim,ioo(Aup) = Ah.

(s} |imn~>+i><:(unvn) =h-h.

Q limy o2 =3if h#0.

© liMnsoe |Un| = | 1.



Remarks:
© The sum of two divergent sequences can be convergent.
@ The absolute value of a divergent sequence can be convergent.
Examples:
Q Let (up)nen and (v,)nen be defined as:
U, =2nand v, = —2n+ e " for all n € N.
Both (u,) ey and (vy)qen are divergent. However, the
sequence (u, + v,)nen is convergent because v, + v, = e~
for all n € N.
@ Let u, = (—1)" for all n € N. The sequence (uy)nen is
divergent. However, we have |u,| = 1 for all n € N, hence the
sequence (|up|)qen is convergent.

n



Q If (un)nen is a convergent sequence such that u, > 0 for all
n € N (resp. u, <0 for all n € N), then lim,, - u, >0
(resp. limp— 100 up < 0).

@ If (un)nern and (vi)nen are two convergent sequences such
that u, < v, for all n € N, then lim, . v, <lim,_ 1o vy



Proof:

1. Since u, >0 forall n€ N and / = lim,_, .~ u,, we can show
that / > 0.

By assuming the opposite / < 0. Let ¢ = % > 0, then there exists
ne € Nsuch that forall ne N, n > n. = |u, — /| < %

| — % <up <+ % < 0, which is absurd because u, > 0 for all
n e N.



2. Since u, < v, forall ne N, let 1 = lim, ., u, and

I = lim,_ 10 V. Suppose by contradiction that /, < /1, and let
€= % > 0. Then there exists n. € N such that for all n € N,
n>n.=|u,— h| < ’15’2, which implies

hth <y, < % (1).

Also, there exists n. 6 N such that for all n € N,

n>nl = v, —h|<* /2 , leading to

3/2 h <v, < /1+/2 (2)

Let n! = max(ng, n’). Combining (1) and (2), we have

dn” € N such that for all n € N, n > n/ = v, < % < Up.
Therefore, v, < u,, which is absurd because u, < v, for all n € N.
Alternatively, we can view this property as a direct consequence of
the first one, where we simply set w,, = v,, — u,. Since w, > 0 for
all n € N, we have lim, , . w, > 0, implying

limp s oo(vy — uy) > 0, which further leads to

limp oo Vo 2> limy i oo Up.



Theorem: Any increasing (resp. decreasing) and bounded above
(resp. bounded below) sequence converges to its supremum (resp.
infimum).

Proof: Let (u,),c be an increasing and bounded above sequence.
Then, for all n € N, u, < u,.1, and there exists M € R such that
up < M. Let E = {up,n € N} and u = sup(E). According to the
characterization of the supremum, we have, for every ¢ > 0, there
exists p € N such that v — ¢ < u,.

Since (u,) is increasing, for all n € N such that n > p, we have

up < up.

Now, since u, < u, we get u — ¢ < up < u, < u < u+¢c. Hence,
for every ¢ > 0, there exists p € N such that for all n € N such that
n > p, we have |u, — u| < . Therefore, lim,,~ u, = sup(E).



Theorem: Let (u,)qen, (Vn)nen, and (w,,)qen be three real
sequences such that for all n > ng, u, < v, < w,, and

limp 100 Up = limp 100 wp =1, then lim, v, = 1.

Proof: Let £ > 0. There exists n; € N such that for all n € N such
that n > ny, we have |u, — /| < £ which implies | — 2 < u, < |+ ¢.
Similarly, there exists n, € N such that for all n € N such that

n > np, we have |w, — /| < & which implies /| — & < w, < /4 ¢. Let
n3 = max(ng, n1, nz). Then, for all n € N such that n > n3, we
have | — ¢ < u, < v, < w, < | + &, which leads to

| —e <v,<l+eor|v,— I <e. Therefore, for every £ > 0, there
exists n3 € N such that for all n € N such that n > n3, we have

\v, — || < &, which concludes that lim, - v, = /.



Theorem: Let (u,)nen and (v,)nen be two real sequences such
that lim, oo uy = 0 and (v,)pen is bounded. Then

limp—s 400 Un - vy = 0.

Proof: Since (v,),cn is bounded, there exists M > 0 such that
\vy| < M for all n € N. Also, lim,_, o u, = 0 implies that for
every ¢ > 0, there exists n. € N such that for all n € N such that
n > n., we have |u,| < .

This leads to |u, - viy| = |up| - [va| < 7 - M = . Thus, for every

e > 0, there exists n. € N such that for all n € N such that n > n_,
we have |u, - v,| < &, which means lim,, . v, - v, =0.



Theorem (Bolzano-Weierstrass): Every bounded real sequence
(un)nen has a convergent subsequence.



Adjacent Sequences:

Definition: Let (u,),en and (v,),en be two real sequences, such
that (u,),ecn is increasing and (v,),en is decreasing. The sequences
(un)nen and (v,)pen are called adjacent if lim, 4 oo (1, — v,) = 0.



Theorem: Two adjacent real sequences converge to the same limit.
Example: The sequences (u,),en+ and (v,) e+ defined by

Up =D p1q % and v, = u, + % respectively, converge to the same
limit since they are adjacent. Indeed, (u,),cn+ is increasing,
(Vn)nen- is decreasing, and we have

limp—s400(Vn — Up) = limp— 400 % =0.



Cauchy's Convergence Criterion

Theorem: Let (u,),cny be a convergent sequence. Then, (u,)qen
possesses the following property known as the Cauchy criterion. For
any € > 0, there exists an integer N such that for every pair of
integers p and q greater than IV, we have |u, — ug| < e.

u» 4 o
. ? Up — Ug| < &
bl o
o - e A e
Uq ry [ ] * *
s *®
N P ! n
Figure:



proof:
Let / be the limit of the sequence. We have

|up — tg| = |up = 1+ 1 = ug| < [up = I| + [/ = ug]

The sequence (u,) e converges to /. Therefore, by definition, for
any € > 0, we can associate an integer /V such that for all p > IV,
we have |u, — /| < 5, and for all integer g > N, we have

\ug — 1| < 5. For any pair of integers p and g greater than IV,

e €
lup —ugl < =+ -=¢. O
2 2



This brings us to the following definition:

Definition: We say that a sequence (u,),c is a Cauchy sequence
if it possesses the following property, known as the Cauchy
criterion: For any € > 0, there exists a natural number N such that
for any pair of integers p and g greater than NV, we have

|up — uq| <€
or, in short,

Ve > 0,3N,Vp,¥q, (p,q> N = |up,— ug| <¢)



Example: Show that (u,),en is a Cauchy sequence where v, = %
We have |u, — ug| = |% — %\ < \%\ +| - %\ Let us take

1
p>N %<

1,1 _ 1,1
Thus, upfuq|§6+B<N+N.
So that |u, — ug| < ¢, it suffices that 5 < e. And so it suffices to

take:
-

== ==




Recursive Sequences

Definition
Let f : D C R — R be a function. We call a recursive sequence a
sequence (u,) for n € N defined by up € D and the relation

VneN: upp1 = f(up).

In the study of recursive sequences, we always assume that
f(D) C D.
Example: Let u, = 2u,_1 + 1 and up = 1 we can compute the
next terms:

m=2-1+1=3

u=2-3+1=7



Remarks:

@ If the function f is increasing, then studying the monotony of
(un)nen is given by examining the sign of the difference

f(uo) — up-
o If f(ug) — ug > 0, then the sequence (u,),cn is increasing.
o If f(ug) — ug < O, then the sequence (u,) e is decreasing.
o If the function f is monotonic and continuous on D, and the
sequence (u,),eny converges to a limit / € D, then its limit
satisfies the equation f(/) = /.



Computation of Limits in 'Python’

In Python, you can; for example , use the ‘sympy’ library to perform
the limit as n — oo of the sequence defined by u, = f(n) is
determined by the commands:

)/ (4*n+5), n,sp.oo)

This code uses ‘sympy’ to define a symbolic variable ‘n* and then
uses ‘sp.limit’ to calculate the limit of the sequence (u,) where:
u, = i;;; The function ‘sp.oo’ represents infinity in sympy. Using
"print(...)", the result will be:




If one takes u, = n, then he can write the code:

resul%_i: sp.limit(n, n,sp.oo)
print(result_2)

and find the result (infinity):



Thanks
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