University A. Elhafidh Boussouf Mila Institute of Science and Technology Department of Process Engineering

Serie No. 2

Exercice 1

1) What are the conjugate bases of the following acids:

 H_2O ; HSO_4 -; H_2PO_4 ; HBr; NH_3 ; HCO_3 ; $Al(OH_2)_6$ 3+

2) What are the conjugate acids of the following bases:

 H_2O ; SO_4^{2-} ; $H_2PO_4^{-}$; Cl^- ; NH_2^{-} ; NH_3 ; CO_3^{2-} .

Exercice 2

- 1) Calculate, at 25°C, the pH of a 0.1 M (decimolar) solution of nitric acid.
- 2) Calculate the pH of a 10^{-8} M solution of nitric acid (HNO₃) at 25°C.

Exercice 3

What is the change in the concentration of hydronium ions ($[H_3O^+]$) and hydroxide ions ([OH]) when a 0.1 M solution of HCl is diluted 10 times ?

Similarly, what happens to these concentrations when a 0.1 M solution of acetic acid (CH₃COOH), with Ka= $10^{-4.75}$, is diluted 10 times?

Exercice 4

Calculate the concentration of hydronium ions $[H_3O^+]$ and hydroxide ions $[OH^-]$ in the following aqueous solutions:

- 1) A mixture of 50 cm³ of HCl (0.1 M) and 30 cm³ of NaOH (1/30 M).
- 2) A mixture of 75 cm³ of KOH (1/15 M) and 50 cm³ of a weak acid (0.1 M) with a dissociation constant $K_a=10^{-6}$.

Exercice 5

We have an aqueous solution of an acid AH with a concentration $\bf C$ equal to 0.05 mol/L. The concentration of hydronium ions is 3.16×10^{-4} mol/L.

- 1. Is the acid AH strong or weak?
- 2. What is its K_a value if it is weak?
- 3. What is its degree of dissociation α ?
- 4. What are the concentrations of the dissolved species?