Chapter 2: Free Linear Systems one-degree

of freedom.

2.1. Free oscillations

e A system oscillating in the absence of any excitation force is called a free
oscillator.

e The number of independent quantities involved in the movement is called
the degree of freedom.

e We call a harmonic oscillator as soon as it is separated from its equilibrium
position by a distance x (or angle 6), is subjected to a restoring force
opposite and proportional to the separation x (or 6):

F= —Cx (2.1)

2.2. Linear oscillator

Vibratory motion is said to be linear if it is governed by a differential equation of
the form:

G+ 05q=0 (2.2)

2.3. Equilibrium conditions
e The equilibrium condition is F=0. If the equilibrium is at q=qo we write

Flgeq, =0 (2.3)

For a force derived from a potential (— Z—Z), the equilibrium condition is written:

U
LA I (2.4)
aq]q=qo

The stability condition (the equilibrium is stable if, once the system moves away
from its equilibrium position, it returns to its equilibrium) is given by

22U
22 >0 (2.5)




The equilibrium of a system is unstable if the system does not regain its
equilibrium during a deviation, i.e. if C <0. The unstable equilibrium condition is
written as
d%u
0q?

<0 (2.6)

stable
unstable

2.4 The energy of a harmonic oscillator
The energy of an harmonic oscillator is the sum of its kinetic and potential
energies: E=T+U

e The translational kinetic energy of a body of mass m and velocity v is:
Ttranslationz 1/2 ‘m,v2 (27)

e The kinetic energy of rotation of a Body of moment of inertia I, about an
axis A and angular velocity 8 is:

T rotation :% I, 92 (2-8)

e The potential energy of a mass m in a constant gravitational field g is :

U=mgh (2.9)
(or U=-mgh in the case of a descent of height /)

e The potential energy of a spring of stiffness k at a deformation x is :

Uressort= %sz (210)

e The potential energy of a torsion spring of stiffness k when deformation 6
U=3 K6? (2.11)

Note:
The inertia of a body depends on its dimensions, mass and axis of rotation. The
figure shows the inertia of different shapes.
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Fig.10. inertia of different shapes

2.5. Huygens' theorem :

The moment of inertia varies with the axis of rotation, so if lo is the inertia of a
body of mass m when the axis of rotation passes through the center of mass of the
body ,and 14 is the moment of inertia if the axis of rotation is A with a distance d
between the center of mass and the axis of rotation, Huygens' theorem gives the
inertia by the following formula:

Ia= lo+md? (2.12)



2.6. Equation of motion of a harmonic oscillator
2.6.1. Example of a mass-spring system
Applying the Newton’s laws, we obtain :

Fig.11.Harmonic oscillator
(mass-spring)

-kxo+mg=0 (2.13)
-k(Xo+Xx)+mg=mi (2.14)
So
mi+kx=0
. k
X+—x= 0 (2.15)

On the other hand, we can find the equation of motion using Lagrange's formula

2()-2-0 1o

Where

g is the generalized coordinate describing the motion of the system (x,y,z,0O....... )
and the number of degrees of freedom of the motion is the number of independent
generalized coordinates.

L=T-U (2.17)



L is the system’s Lagrangian equal to the difference between kinetic energy and
potential energy.

T is the kinetic energy of the system

U is the potential energy of the system

For the example of a mass-spring system, we have:

U=%kx2 and T =%m5c2

L=1mx? — Zkx? (2.18)
2 2

Then the equation of motion of undamped free system by Lagrange's formula is

d /0L dL
E(Ec) ~-==0 (2.19)
mi+kx=0
. k
X+—x = 0 (2.20)

Which is the equation obtained using the fundamental principle of dynamics or
the conservation equation.

2.7. Solution of the equation of motion:
The differential equation of the harmonic oscillator has the following sinusoidal
solution:
X = A sin(wot + ¢) (2.21)
The amplitude A and phase ¢ depend on the initial conditions, and to find their
values we need two initial conditions (usually g(to) and
g (to). We can therefore vary these constants by varying the initial conditions.

{q(t =0) =qo
g(t =0) = qo
In other words
Asing = q
{—A(DOCOS(P = qo
To calculate the constant A, we squareqo and g,then add them term by term, we
get:

qo do )
(K)Z + (A_coo)z = 1= (Awg)? = (qowo)? + §o°



- 2
So:A = [{oo) ¥ (2.22)

2

®o
And tgp = — q:;’)o =@ =arctg(— q:z)o) (2.23)

2.8. The natural frequency
The natural pulsation is called w, because it depends only on the oscillator's own

quantities (a)0=\/§) for the mass-spring system).

2.9. The total energy of a harmonic oscillator :
We saw earlier that the solution to the differential equation of motion has the form

X(t)=Asin(wot+ ) (2.24)
So:
x(t)=A wocos(wot+¢) (2.25)

The total energy of the system is:

E=T+U (2.26)
With : U=> ka? (2.27)
And T =-mi? (2.28)
Then :

E= %mAzw(Z) cos? (wot+g0)+% kA%sin? (wot + @) (2.29)

On the other hand, we have:

wo=\/% =k = mwj (2.30)

We remplace k = mw3,

The result is:



E== kAZcosX(wot+@)+= kAsin? (wot + @) (2.31)

E=>kA? (2.32)

2.10. Variation de I’énergie d’un systéme vibratoire

In vibratory motion, total energy is constant. Energy is transformed from kinetic
to potential energy. When kinetic energy decreases, potential energy increases,
and vice versa. This property is known as the conservation of the system's total
energy. The variation of Kinetic, potential and total energies as a function of
displacement x is

Fig.12.Variation of kinetic, potential and total energies as a function of x

Notes
e The total energy of a system E=T+U is constant (dE/dt=0 means that the
system is conservative).

e The restoring force of a spring F=-kx is related by the potential energy as
follows:

0 (1 oU
F= k= —o(She?) = -

e The harmonic oscillator, whatever its nature, is a conservative system.



Example

Consider the following system

1-What is the kinetic energy and potential energy of the system.
2-What is the Lagrangian of the system?

3-Find the differential equation of motion.

4-At initial conditions ©(0)=0 and 6 (0)=1,

find the amplitude of motion and the phase shift

with K=10-4N/met m=1Kg

Response
The equivalent system is: Keq = 3k

u= EK(xo + x,)% — mgx, + mgxs

x; = —lsinB =-10
x, = —2lsin® = —-210
x3 = —lsinB = —10

By replacing the expression of these coordinates in U:

3
u = EK(XO —10)? + 2mgle — mglo

3 3
u= EK(IZGZ) + (mg — 3Kx,)10 + szg

cyep s Ju
At equilibrium i 0

du
— =3KI1?0 + (mg —3Kxy)l =0

a6
But also, at equilibrium 0=0, so the equilibrium condition becomes:
mg
—3Kx,) =0 =—
(mg Xo) =X0 3K

3 3
u = EK(IZGZ) +§Kx§
The Kinetic energy of the rotating system is:

1 .. 1 .
T = 5192 = E(ml2 + m(20)?)6?

=T= g mi%6?
So the Lagrangian of the system is:
L= g mi26? — %K(IZGZ) — %Kxg
And the motion equation is :



d(aL) aL—s 126 + 3KI1%0 = 0
di\gp) a0 ™ B

—d+Xg=0
5m
3K

Where the natural pulsation is:w, = p—



