
Chapter 3: Damped free systems with one degree of freedom. 

 

3.1 Introduction : 

In practice some energy is always dissipated by a resistive or viscous process; for 

example, the amplitude of a freely swinging pendulum will always decay with 

time as energy is lost. The presence of resistance to motion means that another 

force is active, which is taken as being proportional to the velocity. The frictional 

force acts in the direction opposite to that of the velocity  and friction forces have 

the following form  

f=-cv                                                                                                               (3.1)  

where : 

c is the coefficient of friction 

v is the velocity 

  

The damped system is characterized by  

 

 

3.2 Lagrange equation for the damped system: 

In the case of the damped system, there is a friction force of the form  

f=-c𝑞̇ and the energy loss is defined by the dissipation function 𝐷 =
1

2
𝑐𝑞̇2 and the 

equation of motion in the case of a damped free system is : 

  

 

                                         
𝒅

𝒅𝒕
(

𝝏𝑳

𝝏𝒒̇
) −

𝝏𝑳

𝝏𝒒
+

𝝏𝑫

𝝏𝒒̇
= 𝟎                                             (3.2) 

Example:  

In the case of the mass-spring system, we have :                                     

The kinetic energy of the mass is 𝑇 =
1

2
𝑚𝑥̇2 

The potential energy of the spring is U=
1

2
𝑘𝑥2 

The dissipation energy is 𝐷 =
1

2
𝛼𝑥̇2 

So 𝐷 =
1

2
𝛼𝑥̇2 

And   
𝜕𝐿

𝜕𝑥
= 𝑘𝑥 

                                                                                                         Fig.13.Damped free system 

and 
𝜕𝐷

𝜕𝑥̇
= 𝛼𝑥̇ 

The equation of motion is    

𝑚𝑥̈ + 𝑘𝑥 + 𝛼𝑥̇ = 0 

⇒ 𝑥̈ +
𝛼

𝑚
𝑥̇ +

𝑘

𝑚
𝑥 = 0 

 



Which is a second-order linear differential equation 

More generally, for a generalized coordinate q it is written 

𝑞̈ + 2𝛿𝑞̇ + 𝜔0
2𝑞 = 0 

 

3.3. Solving the differential equation of motion 

The second-order linear differential equation  

                                            𝒒̈ + 𝟐𝜹𝒒̇ + 𝝎𝟎
𝟐𝒒 = 𝟎                                               (3.3) 

has the following characteristic equation: 

𝜆2 + 2𝛿𝜆 + 𝜔0
2 = 0  

Depending on the nature of the roots of the characteristic equation, there are three 

types of damping. 

𝛥̀<0⇒ 𝛿2 − 𝜔0
2 < 0 weakly damped system. 

𝛥̀=0⇒ 𝛿2 − 𝜔0
2 = 0 criticaly damped system. 

𝛥̀>0⇒ 𝛿2 − 𝜔0
2 > 0 strongly damped system. 

 

3.3.1. Weakly damped regime: 

If δ<ω_0the solution of the differential equation of motion takes the form: 

 𝒒(𝒕) = 𝑨𝒆−𝜹𝒕𝒄𝒐𝒔(𝝎𝒂𝒕 − 𝝋)                                                                              (3.4) 

 

Such that: 𝜔𝑎 = √𝜔0
2 − 𝛿2                                                                               (3.5)                                      

𝜔𝑎   𝑖𝑠 the frequency damped system.  

 

We define the period of the system T called the pseudo-period as follows: 

                                                  T=
𝟐𝝅

𝜔𝑎
                                                              (3.6) 

3.3.2. Critical regime : 

If 𝛿 = 𝜔0the system no longer performs oscillatory motion and the system returns 

to equilibrium without any oscillation the solution of the differential equation of 

motion takes the form : 

 

                                                  𝒒(𝒕) = 𝒆−𝜹𝒕(𝑨 + 𝑩𝒕)                                    (3.7) 

We use the initials conditions to find the two constants A and B. 

3.3.3. Highly damped regime : 

If 𝛿 > 𝜔0   in this case too the system no longer performs oscillatory motion and 

the system returns directly to equilibrium without any oscillation and the solution 

of the differential equation of motion takes the following form:   

𝒒(𝒕) = 𝒆−𝜹𝒕(𝑨𝒆
−√−𝝎𝟎

𝟐+𝜹𝟐 𝒕
+ 𝑩𝒆

√−𝝎𝟎
𝟐+𝜹𝟐 𝒕

)  
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.14.les types d’amortissement. 

 

 

 

 

 

Example: 

We found the differential equation of the mass-spring system in the case of the 

damped regime is 𝒙̈ +
𝜶

𝒎
𝒙̇ +

𝒌

𝒎
𝒙 = 𝟎 

The characteristic equation is : 

𝝀𝟐 +
𝛼

𝑚
𝝀 +

𝑘

𝑚
= 0 

We have : Δ=(
𝛼

𝑚
)2 − 4

𝑘

𝑚
 

 

Depending on the sign of Δ, there are three types of friction 

Δ=0 ⇒ (
𝛼

𝑚
)2 = 4

𝑘

𝑚
⇒ 𝜆 = −

𝛼

2𝑚 
 (critical regime case) and the solution to the 

equation is : 

𝑥(𝑡) = 𝑒𝜆𝑡(𝐴 + 𝐵𝑡) 

 

 

                                                                                        



 

Fig.15. Variation of q(t) as a function of time for the critical regime 

 Δ>0⇒ (
𝛼

𝑚
)2 >

𝑘

𝑚
⇒ 𝜆1 = −

𝛼

2𝑚
− √(

𝛼

2𝑚
)2 −

𝑘

𝑚
   et 

𝜆2 = −
𝛼

2𝑚
− √(

𝛼

2𝑚
)2 −

𝑘

𝑚
   (case of the highly damped regime) and the solution 

of the equation is: 𝑥(𝑡) = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡 
 

 

 

 

 

 

 

 

 

 

 

 

 Δ<0⇒ (
𝛼

𝑚
)2 >

𝑘

𝑚
⇒ 𝜆1 = −

𝛼

2𝑚
− 𝑖√

𝑘

𝑚
− (

𝛼

2𝑚
)2 

𝜆2 = −
𝛼

2𝑚
+ 𝑖√

𝑘

𝑚
− (

𝛼

2𝑚
)2 (Case of the weakly damped regime) and the 

solution of the equation is: 

𝑥(𝑡) = 𝑒−
𝛼

2𝑚(𝐴 𝑐𝑜𝑠√
𝑘

𝑚
− (

𝛼

2𝑚
)

2

𝑡 + 𝐵𝑠𝑖𝑛√
𝑘

𝑚
− (

𝛼

2𝑚
)

2

) 

 

 

 

 

 

Fig.16.Variation of q(t) as a function of time 

for the highly damped regime 
 

 

 



 

 

 

 

 

Fig.17.Variation of q(t) as a function of time 

for the weakly damped regime 
 

 

 

3.4. Critical damping coefficient 

Cc is the value of C corresponding to Δ=0, that is to say 

 

(
Cc

𝑚
)2 = 4

𝑘

𝑚
 

⇒ Cc = 2m√
k

m
= 2mω0 

                                                  Cc = 2mω0                                                    (3.9) 

 

 

3.5. Damping ratio 

The damping ratio is defined by 

                                                                 𝜀 =
𝑐

Cc
                                          (3.10) 

                                                          ⇒
C

2𝑚
= 𝜀ω0                                         (3.11) 

 

 

3.6. The quality factor 

The quality factor is defined by 

                                             𝑸 = 𝟐𝝅
𝑬

∆𝑬  
 =  

𝛚𝟎

𝟐𝜹
                                              (3.12)   



Where the energy of the harmonic oscillator ∆E is the energy dissipated during 

one cycle. 

Whene the damping is low, the quality  of the system is good. where Q is 

greater,  hence the name quality factor. 

 

3.7. The frequency of the pseudo-period system 

We define the pulsation of the weakly damped system as follows: 

𝝎𝒂 = √𝝎𝟎
𝟐 − 𝜹𝟐                                                                                                (3.13) 

So the period of the system is 

                                                         𝑻𝒂 =
𝟐𝝅

𝝎𝒂
                                               (3.14) 

 

3.8. The logarithmic decrement 

We define the logarithmic decrement which represents the decrease of 

the single-period amplitude of the system as follows: 

𝐷 = ln
𝑞(𝑡)

𝑞(𝑡+𝑇)
                                                                                                 (3.15) 

𝐷 = 𝑙𝑛
𝑨𝒆−𝜹𝒕𝒄𝒐𝒔(𝝎𝒂𝒕 − 𝝋)

𝑨𝒆−𝜹(𝒕+𝑻𝒂)𝒄𝒐𝒔(𝝎𝒂(𝒕 + 𝑻𝒂) − 𝝋)
 

 

where :𝝎𝒂𝑻𝒂 = 𝟐𝝅 

 

And: 𝒄𝒐𝒔(𝝎𝒂(𝒕 + 𝑻𝒂) − 𝝋) = 𝒄𝒐𝒔(𝝎𝒂𝒕 − 𝝋) 

 

So : D= 𝑙𝑛
𝑨𝒆−𝜹𝒕

𝑨𝒆−𝜹(𝒕+𝑻𝒂) = 𝑙𝑛𝒆𝜹𝑻𝒂   

 𝑫 = 𝜹𝑻𝒂                                                                                        (3.16) 

 

3.9. The energy dissipated 

Because of the friction force, the system suffers a total energy loss due to the 

work of the friction forces. 

                                                dET(t)=-dwfr                                                            (3.17) 

 

 

 

 

 

 



 

Exemple1 : 

We define a damped oscillator governed by the following differential equation: 

𝒙̈ +
𝜶

𝒎
𝒙̇ +

𝒌

𝒎
𝒙 = 𝟎 

Where m is the mass of the body, k is the spring coefficient and x is the 

displacement of the body. We launch the system with an initial speed 

 v0=25cm/s. 

We have at : t=0, x=0 et 𝑥̇ =v0 

 Calculate the natural period of the system, Knowing that 

m=150g et k=3.8N/m. 

 Show that if α=0.6kg/s, the body has a damped oscillatory motion. In this 

case, solve the differential equation. 

 Calculate the pseudo-period of the motion. 

 Calculate the time tm after which the first amplitude xm is reached. and 

deduce xm. 

 Calculate the speed of a pseudo-period. 

Exemple 2 : 

 

In the previous system, the bar of mass m and length 3l can rotate around the 

axis passing through O. We symbolize all the friction by a damper of coefficient 

α. 

At equilibrium the rod is horizontal. 

The rod is moved away from the horizontal by a small angle to admit that 

 sin Ɵ=Ɵ 

1. Find the differential equation of motion. 

2. What is the value that the coefficient of friction α must not exceed to have an 

oscillatory motion. 

Calculate this value if m = 1 kg and k = 1 N/m. 

3. For the value calculated in the previous question takes,What is the nature of 

the motion? 

 



4-Give the time equation Ɵ (t) knowing that initially conditions are 

Ɵ(0) = 5°et Ɵ̇ (0) = 0°/s. 

 

Réponse : 

The equation of motion of this system is given by: 
𝒅

𝒅𝒕
(

𝝏𝑳

𝝏𝒒̇
) −

𝝏𝑳

𝝏𝒒
+

𝝏𝑫

𝝏𝒒̇
= 𝟎 

Où L=T-U 

Avec T=                et U=              

So the equation of motion is 

𝜽̈ +
𝜶

𝒎
𝜽̇+

𝑲

𝒎
𝜽 = 𝟎 

 

For there to be an oscillatory motion is necessary to be in the pseudo-periodic 

regime 𝛿2 − 𝜔0
2 < 0  

(
𝜶

𝟐𝒎
)𝟐 −

𝑲

𝒎
< 02√𝐾𝑚 

So :2Ns /m 

Whene :=2Ns /m we are in the critical regime. 

the time equation of motion knowing that =
𝜶

𝟐𝒎
=1s-1 is 

 

 

𝜽(𝒕) = 𝒆−𝒕(𝑨𝟏 + 𝑨𝟐𝒕) 

 

 

A1and A2 are determined from the initial conditions    𝜃(0) = 5°𝐴1 = 5° 

 

𝜃̇(𝑡) = −𝑒−𝑡(𝐴1 + 𝐴2𝑡) + 𝐴2𝑒−𝑡 

 

𝜃̇(0)=0°/s𝐴2 = 5°/𝑠 

So the equation of motion is: 

𝜽(𝒕) = 𝒆−𝒕(𝟓 + 𝟓𝒕) 

 

 

 

 


