Tutorial Worksheet No.2

Exercise 1.

a) Let A and B be two sets in a universal set U such that $A = \{1, 2, 3\} \qquad B = \{1, 2, 4\}$ – 1-a) Find the following :

– 1-b) Represent graphically $A \times B$ b) Let E and F be two sets defined by

$$E = \{\{c\}, \{c, e\}\}, \quad F = \{\{a\}, \{a, b\}\}$$

- Prove that $(E = F) \Rightarrow (c = a) \land (e = b)$

Exercise 2.

The two sets A and B are defined by : $A = \{set \ of \ odd \ numbers\} = \{1, 3, 5,\}$ $B = \{set \ of \ even \ numbers\} = \{0, 2, 4,\}$ – Find the following :

$$\begin{aligned} \mathbb{Z} - (A \cup B), \quad (A \cup B) - \mathbb{Z}, \quad (A \cup B) - \mathbb{N}, \quad \{0\} \cup \mathbb{N}, \\ (A \cup B) - \{0\}, \quad (A \cup B) \cap \{0\}, \quad \mathbb{Z} \cap \mathbb{N} \end{aligned}$$

Exercise 3.

Let *A*, *B*, *C* be subsets of *U*. Determine the following sets – $D = (A \cap B) \cup (C_U^A \cap B)$ $E = (C_U^A \cup C_U^B) \cap (C_U^A \cup B)$, $F = (C_U^A \cap C_U^B) \cap C_U^{A \cap B}$

Exercise 4.

Let A and B be two sets. Prove that - If $(A - B) \cup B = A$, then $B \subset A$.

Exercise 5.

Let S be a relation on $\mathbb R$ defined by

$$\forall a, b \in \mathbb{R} \mid ab = 2a - 1$$

- Is the pair $(\mathbf{1},\mathbf{1})$ an element of S ?
- Is S reflexive for a = 1.?
- What is the condition in the element $\left(a,b\right)$ to satisfy the symmetric property of S ?
- What is the condition on the elements *a*, *b* and *c* to satisfy the transitive property of *S* ?

Exercise 6.

Let $a \ge 0$ and let \Re be a relation from E to F on $I = [0, +\infty)$ defined by

$$\forall (x,y) \in E \times F \mid \frac{ae^{x-2}}{y} - \frac{e^y}{x} = 0$$

- Determine a such that the relation \Re is reflexive.
- By replacing the found value of a in \Re . Is \Re an equivalence relation?

Exercise 7.

Let \mathcal{R} be a relation on \mathbb{R} defined by : $\forall (x, y) \in \mathbb{R}^2$, $xRy \Rightarrow cos^2(x) + sin^2(y) = 1$

- 1. Show that the relation ${\mathcal R}$ is an equivalence relation.
- 2. Find the class of equivalence [x].

Home work exercise.

Let S be a relation defined on \mathbb{N} by : $\forall k_1, k_2 \in \mathbb{N}, k_1 S k_2 \Rightarrow k_1 \text{ divise } k_2$

– Prove that \mathcal{S} is a partial order relation on \mathbb{N} .

Exercise 8.

Let E and F be two subsets on $\mathbb R$ where $E=\{1,2,-1\}\text{, and let }f$ be a function defined by

$$f: E \longrightarrow F$$
$$x \longmapsto f(x) = x^2 + 2$$

- 1. Determine F and deduce $f(1), f^{-1}(6)$.
- 2. Determine the image of 3 and the pre-image of 5.
- 3. Is there a pre-image of $1 \ {\rm under} \ f.$

Exercise 9

Let f be a function defined by

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = x^2 + 2$$

- 1. Is f injective and surjective?
- 2. Specify the case in which the function f is bejective.
- 3. Find $f^{-1}([2, 6])$.

Exercise 10

Let f and g be two functions defined by

$$f: \mathbb{R} - \{\frac{1}{2}\} \longrightarrow \mathbb{R} - \{2\} \qquad g: \mathbb{R} - \{2\} \longrightarrow \mathbb{R} - \{1\}$$
$$x \longmapsto f(x) = 2x + 1 \qquad x \longmapsto g(x) = \frac{x}{x-2}$$

- 1. Determine $g \circ f$
- 2. Show that the function $g \circ f$ is bijective.
- 3. Determine $(g \circ f)^{-1}$

Exercise 11

Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by $g(x) = x^2 - 4x + 4$.

- 1. Check that $\forall a \in \mathbb{R}, g(2+a) = g(2-a)$. Deduce that g(x) is not injective.
- 2. Show that $\forall x \in \mathbb{R}, g(x) \ge 0$. Is g(x) surjective?