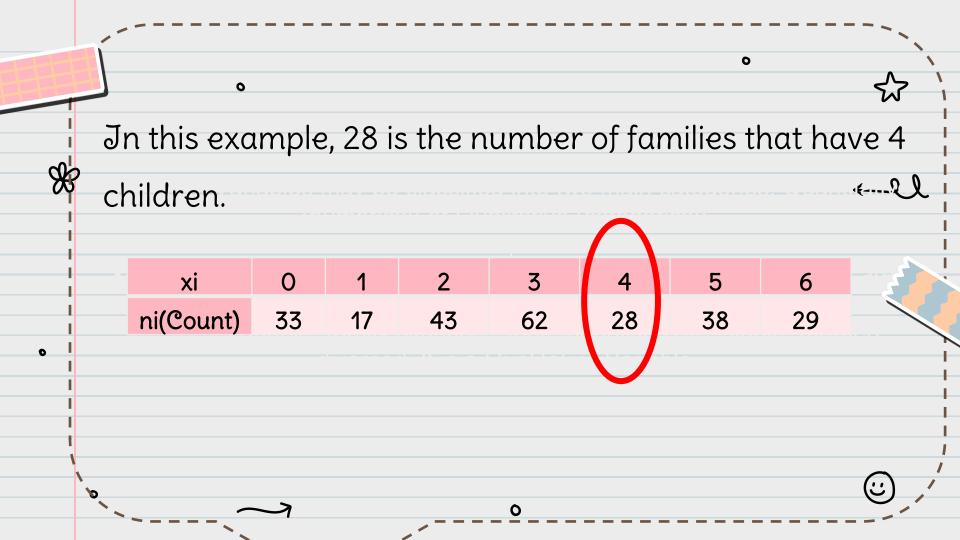
Part A : Statistics Chapter 2: One-variable <mark>statistical series</mark> ← el • 01 Count, Frequency, Percentage: 02 Graphical representations 03 Position characteristics 04 Dispersion characteristics



Partial Count (ni) 0 Corresponds to the number of individuals in the class or the count of how many times that value appears. **ni** : the number of individuals who have the

same xi, is called partial count of xi.

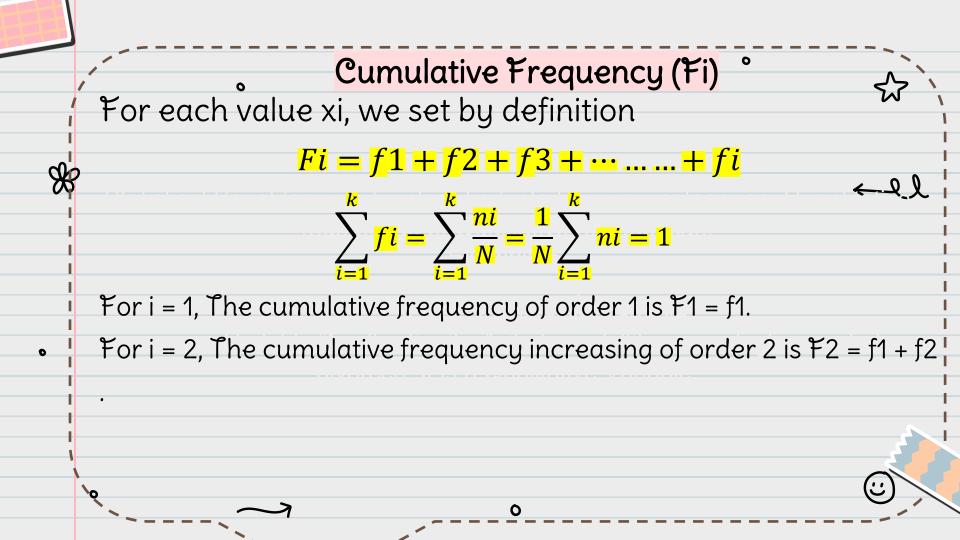
Å

	E	cxample 1	1:					0		
	ð	t survey c	arrie	d out	in a vil	lage c	oncerr	is the i	numb€	erof
8	dependent children per family. We note X the number of									
	children, the results are given by this table:									
i		xi	0	1	2	3	4	5	6	
0		ni(Count)	33	17	43	62	28	38	29	-
		Je have: 4 er family	≥: all f	famili	es, i: a	family •	, X : N	umber	• of chi	Idren

	• Cumulative Count (N)
8	This is the total number of individuals in the
1	population, it corresponds to the sum of all
0	partial counts.
	$N = n1 + n2 + n3 + \dots + ni = \sum_{i=1}^{k} ni$

								0 	 کر	2
X				ampla			250		ج_ا	L .
	Jn the p	0	1	2	3	4	=230 5	6	N	
0 	ni (Count)	33	17	43	62	28	38	29	<mark>250</mark>	/
									\sim	
	×0 		7		0				(ن) 	1

	• Partial Frequency (fi)
8	Jt represents the ratio of the count (ni) by el
	the total count (N).
0	$\frac{fi}{N} = \frac{ni}{N} (0 < fi \le 1)$

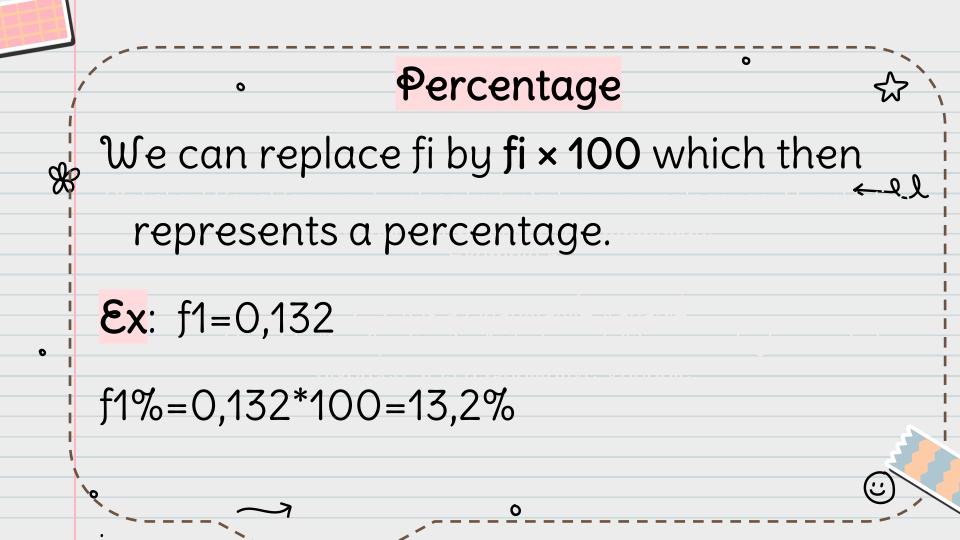

Example:

-0

0

We take the previous example,

×								El.
xi	0	1	2	3	4	5	6	<mark>N</mark>
ni (Count)	33	17	43	62	28	38	29	<mark>250</mark>
fi (Frequency)	$\frac{33}{250}$	$\frac{17}{250}$	$\frac{43}{250}$	$\frac{62}{250}$	$\frac{28}{250}$	$\frac{38}{250}$	$\frac{29}{250}$	250 250
(0,132	0,068	0,172	0,248	0,112	0,152	0,116	1


Example:

~

0

We take the previous example,

×								el.
xi	0	1	2	3	4	5	6	<mark>N</mark>
ni (Count)	33	17	43	62	28	38	29	<mark>250</mark>
fi (Frequency)	$\frac{33}{250}$	$\frac{17}{250}$	43 250	62 250	$\frac{28}{250}$	$\frac{38}{250}$	$\frac{29}{250}$	250 250
(Trequency)	0,132	0,068	0,172	0,248	0,112	0,152	0,116	1
¥i=∑fi	0,132	0,2	0,372	0,62	0,732	0,884	<mark>1</mark>	

Comprehension exercise

The number of rooms in two hundred apartments with four rooms has been

recorded. The following table was obtained:

Calculate frequencies and cumulative frequencies.

xi	1	2	3	4	Total
ni	50	67	70	13	N=200
fi	0,25	0,335	0,35	0,065	¥=1
fi%	25	33,5	35	6,5	100
¥i =∑fi	0,25	0,585	0,935	1	

							、
	0					O	<u>ح</u> رک
							~
•Stati	stical tables	S:					
The st	atistical tab	le of	^r a dise	crete	varia	ble wi	<u>دع</u> ا ill be:
The st	atistical tab	le of	a con	tinuo	US Va	ariable	will
be:			u 0011				
DC.	Xi (Variable)	x1	x2	x3	x4	x5	
	ni (Counts)	n1	n2	n3	n4	n5	
	fi		(0	(0			
	(Frequencies)	f1	f2	f3	f4	f5	
\ \o							
``	\sim		0				

	Remark: By con is excluded from it is always clos	n this		A A			\
	Classes	[a-b[[b-c[[c-d[[d-e[[e-f]	
	ni (Counts)	n1	n2	n3	n4	n5	
	fi (Frequencies)	f1	f2	f3	f4	f5	
<i>ر</i>	·7		00			٢	

X

72%0 1.2% 23% 28 % 3% 53% 12. - 7886 Don't forge " Frequency Frequency Percentage Statistics 466 0 BOOK Graphical Representations 02 0

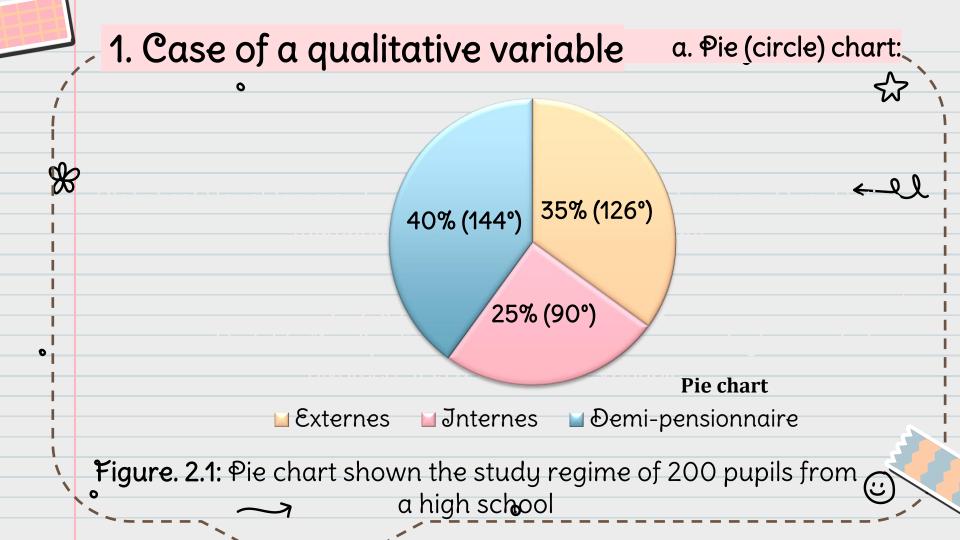
1. Case of a qualitative variable-

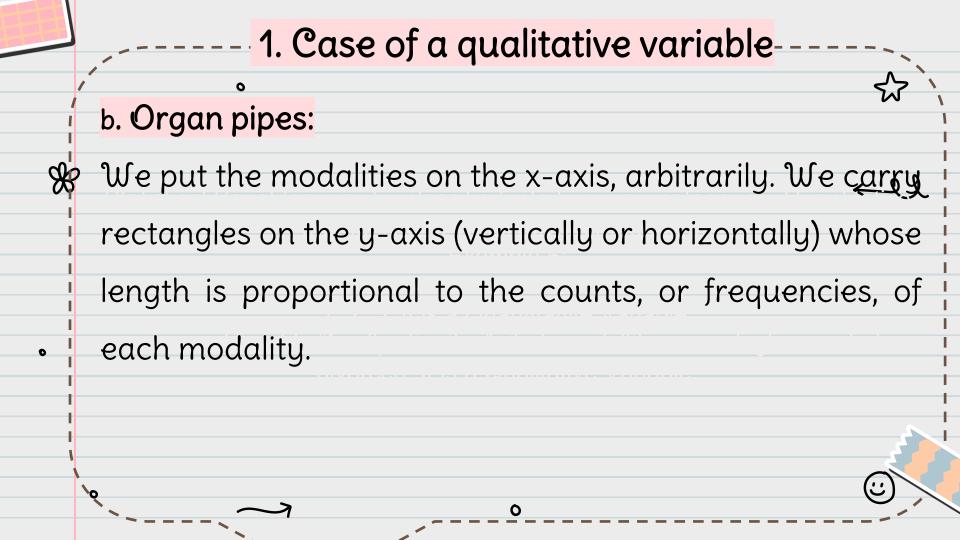
a. Pie (circle) chart:

A pie chart, sometimes called a circle chart, is a way of summarizing a set of nominal data or displaying the different values of a given variable (e.g. percentage distribution). Jn This type of chart, the modalities are represented by an angular sector of a disk (or half-disk), the angle of which is proportional to the count or frequency. So, we make a cross product to know the angle of each sector. In the case of a complete disk, we have the following correspondences:

1.0	.		•		D' (· · · ·				
1. Cas	se of a c	Jualitati	ve vario	able	-	circle) chart				
/ N(100%)	0	360°	$\theta i = \frac{n}{N}$	$\frac{i}{2} * 360^{\circ} =$	<mark>СР * ni</mark>	= fi * 360°				
ni (n%)	Өі		1	•		1				
🖌 We can i	We can use the coefficient of proportionality: $CP = \frac{360}{N}$									
					IN					
Variable	x ₁	x ₂	х ₃	x ₄	Total	Coefficient				
Count	n ₁	n ₂	n ₃	n ₄	N	of				
frequency	$f_1 = n_1/N$	f ₂ = n ₂ /N	f ₃ = n ₃ /N	$F_4 = n_4/N$	1	proportionali				
	Θ₁=n₁*C₽	0 ₂ =n ₂ *ሮዋ	0₂=n₂*C₽	Օ₄=ո₄*Ը₽		· · ·				
Angles					360°	ty				
	=f ₁ *360°	=f ₂ *360°	=f ₃ *360°	=f ₄ *360°		CP=360/N				
l N										

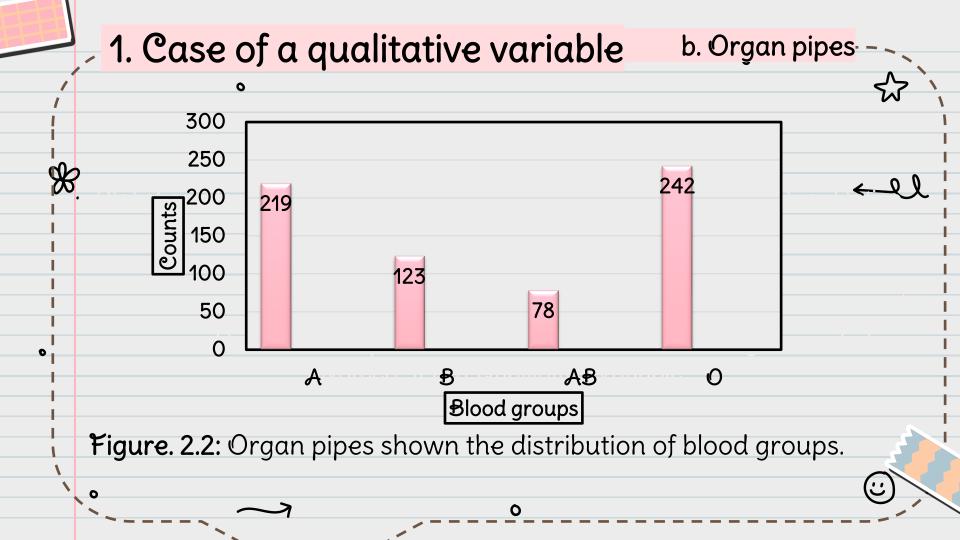
n


(じ


	<mark>- 1. Case of a</mark>	qualitative	variable o	<mark>ı. Pie (circle) chart:</mark>							
	Example 13 : °			· ۲۵							
	The study regim	e was studied or	n a sample of 20	0 pupils from a high							
school, the results obtained are as follows:											
	Make the Graphical Representation of this data in pie chart using										
	frequencies.										
	Education regime	External	Jnternal	Half boarder							
	Number of pupils	70	50	80							
	Frequency fi	70/200=0.35	50/200=0.25	80/200=0.4							
	\sim	,	0								

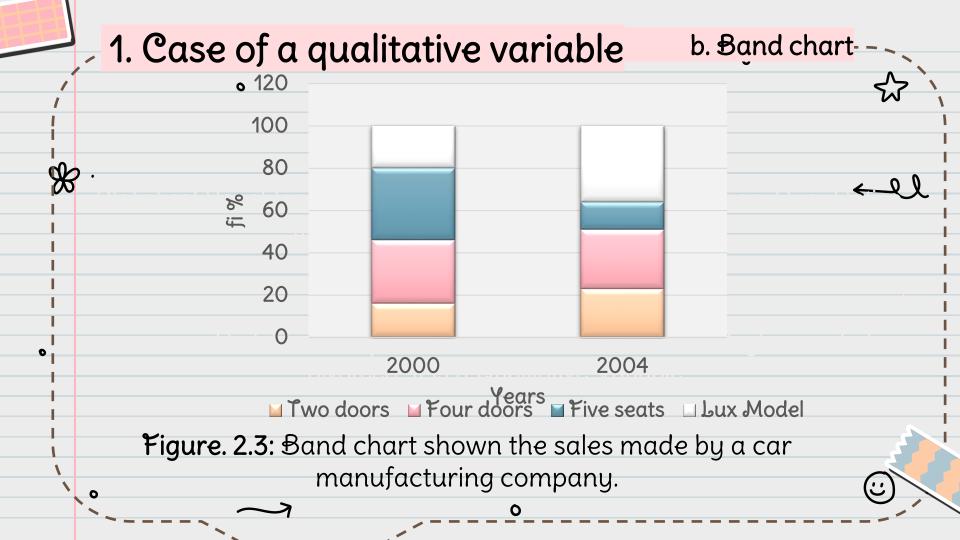
	- 1. Case of a	ı qualitative v	variable a. P	a. Pie (circle) chart:						
1	Example 13 :°			<u>ک</u> ``						
	To make the pie chart of this data using frequencies, we must calculate									
\$	the frequencies and the different angles θ i of each sector.									
	n 360°	θi=ni	/N*360°fi*360°							
_	ni di				i					
	θ1=f1*360°=0.35*	°360°=126°,	θ2=f2*360°=0.25	°=0.25*360°=90°,						
	θ3= f3*360°=0.4*	•								
	Education regime	External	Jnternal	Half boarder						
	Number of pupils	70	50	80						
-	ni		50							
	Frequency fi	70/200=0.35	50/200=0.25	80/200=0.4						

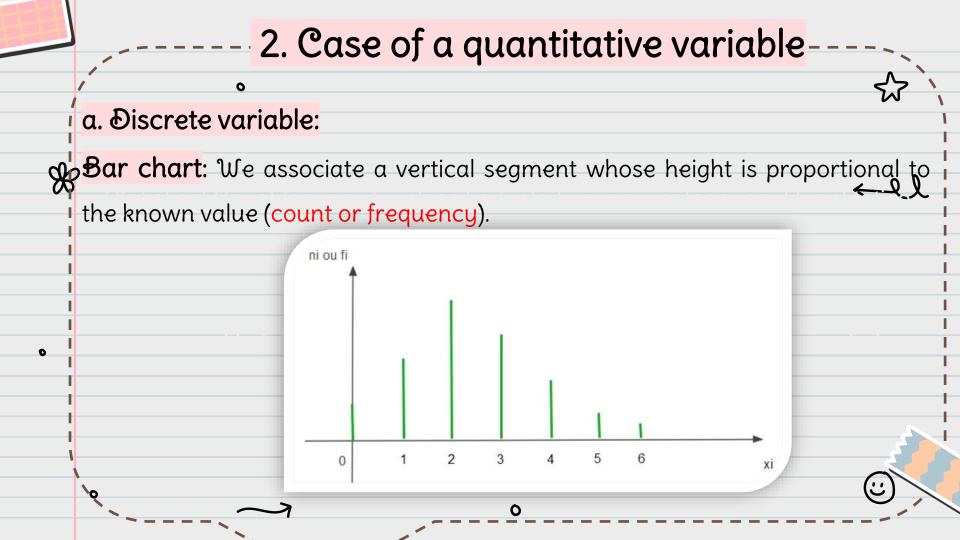
 \cap


(::

	1 Que e ef									
	🔁 1. Case of	a qualita	tive varia	ble b. C	<mark>)rgan pipes</mark> -					
1	Example 14 :°				٢	<u>`</u> ک				
	A survey cond	lucted in 20	15 in Algiers	on the distr	ibution of b	lood				
ж Ч	groups yielded the following results:									
- 1	Blood									
		A	B	AB	O					
	groups Counts	219	123	78	242					
	Counts	217	125	70	272					
1										
1	•	٦	0							

.

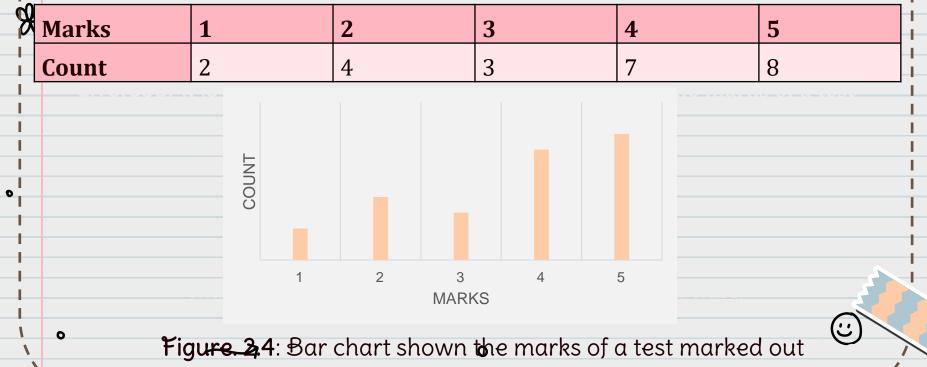


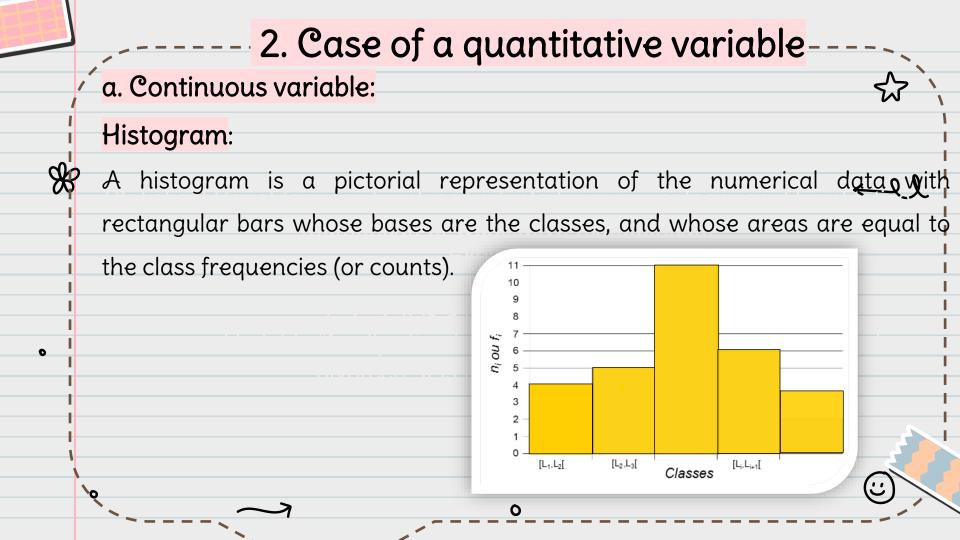

1. Case of a qualitative variable-0 c. Band chart: X It consists to represent each modality in the same vertical band by a slice whose height corresponds to its frequency percentage.

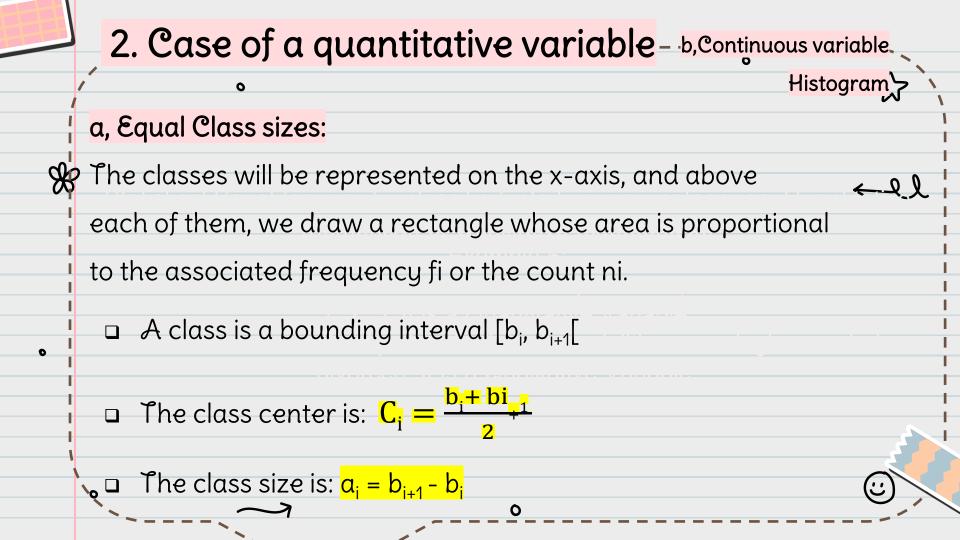
I. Case of a qualitative variable b. Band chart Example 15: •

The sales made by a car manufacturing company during the years 2000 and 2004 are as follows:

X	Vehicles	2000		2004				
-		ni	fi	ni	fi			
	Two doors	800	800/5000=0.16	1600	0.23			
0 1	Four doors	1500	0.3	2000	0.28			
	Five seats	1700	0.34	900	0.13	- 1		
	Lux Model	1000	0.2	2500	0.36			
	total	5000	1	7000	1			

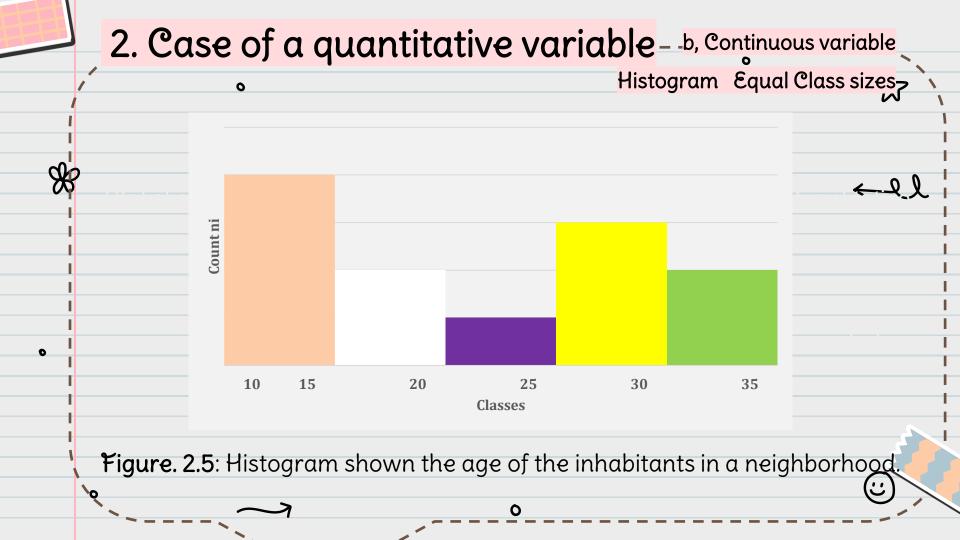




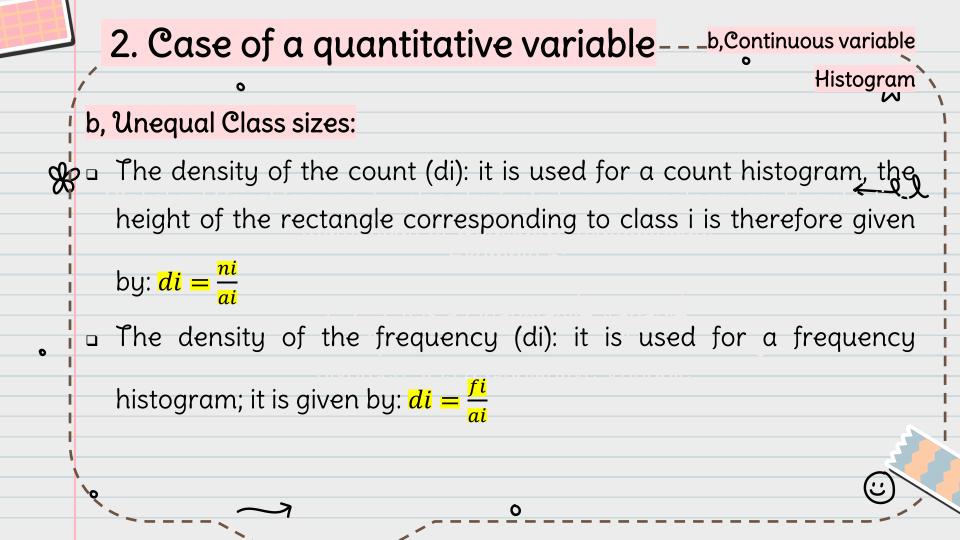

2. Case of a quantitative variable a. Discrete variable

Example 16 : °

Here is the distribution of marks of a test marked out of 5 for a class.



2. Case of a quantitative variable - -b, Continuous variable Histogram Equal Class sizes


Ы

We consider the age of the inhabitants of a neighborhood.

Classes	[10-15[[15-20[[20-25[[25-30[[30-35]	l
ni (Counts)	20	10	5	15	10	
fi (Frequencies)	0.33	0.16	0.08	0.25	0.16	
ai (Class size)	5	5	5	5	5	

2. Case of a quantitative variable - - - b, Continuous variable Histogram b, Unequal Class sizes: The classes will be represented on the x-axis, and above each of them, wa draw a rectangle whose area is proportional to The rectified frequency fi' or the rectified count ni'. The density of frequency or the density of counts. 0 rectified count (ni') and frequency (fi') are computed by using the following * formula: Minimum class size * Frequency (or count) of the class Rectified frequency (or count) = **Class size**

2. Case of a quantitative variable - -b, Continuous variable Histogram unequal Class sizes,

Ы

We consider the age of the inhabitants of a neighborhood.

Classes	[11-15[[15-25[[25-30[[30-37[[37-50]	l
ni (Counts)	20	10	5	15	10	
fi (Frequencies)	0.33	0.16	0.08	0.25	0.16	i
ai (Class size)	4	10	5	7	13	
ni' (Rectified ni)	$\frac{4 * 20}{4} = 20$	$\frac{4 * 10}{10} = 4$	$\frac{4*5}{5} = 4$	$\frac{4 * 15}{7}$ = 8.5	$\frac{4*10}{13} = 3$	
		0				

2. Case of a quantitative variable - -b, Continuous variable Histogram unequal Class sizes ni $\leftarrow ll$ count Rectified Classes

-- 2. Case of a quantitative variable-

- c, Sturges Rule: (Transform the discrete quantitative variable into a
- continuous quantitative variable)
- Jn case we have more than 20 modalities, we should use too many

- bins in the graphical representations, we may just be visualizing the
- noise in a dataset. By chance, we can use a method known as
- Sturges' Rule to determine number of classes to use in a histogram or
 - frequency distribution table. Class formation involves transforming
 - data into continuous distribution.

-c, Sturges Rule:-

For grouping data (for quantitative variable), we should respect these

points:

0

~ll

0

The number of classes should be between five and twenty classes.

Each piece of data must belong to one, and only one, class.

□ Whenever feasible, all classes should have the same width (class

size).

c, Sturges Rule: Sturge's \mathbb{R}° le: $k = 1 + 3.322 \log N$ k: Number of Classes (Rounded to the nearest integer) Å N: Total number of observations The classes are chosen of equal class sizes interval: $a = \frac{E}{r}$ a: class size E: range E= Xmax - Xmin (Difference Between Largest and Smallest Observation)

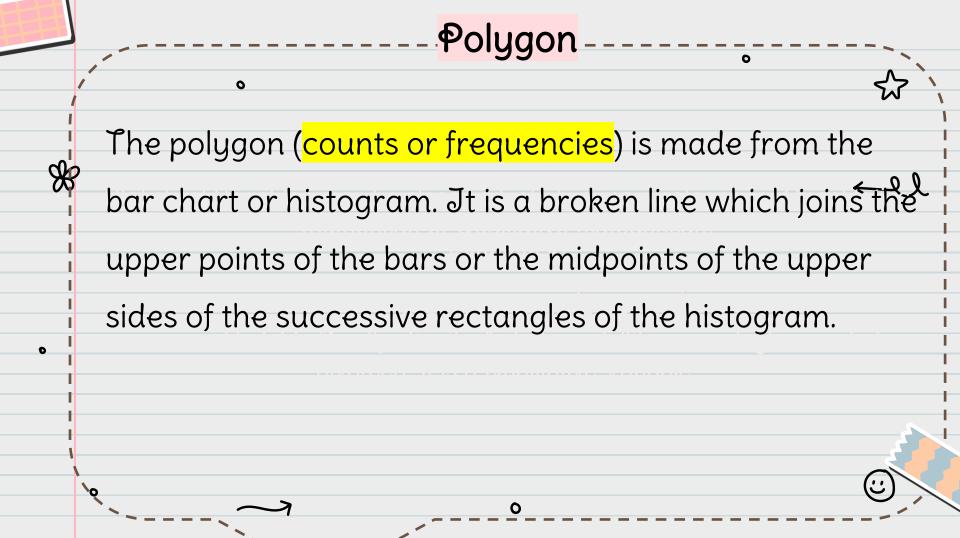
-c, Sturges Rule:-

0

 $\leftarrow ll$

11

Example 19:


X

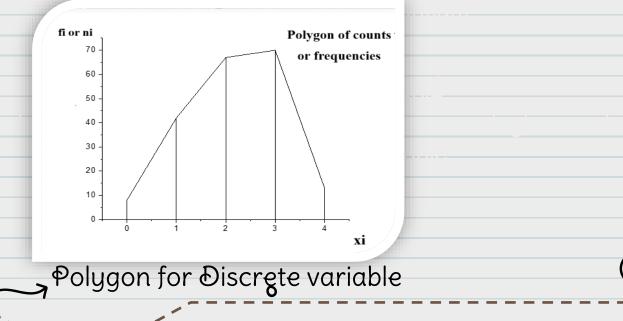
0

Train classes for these observations:

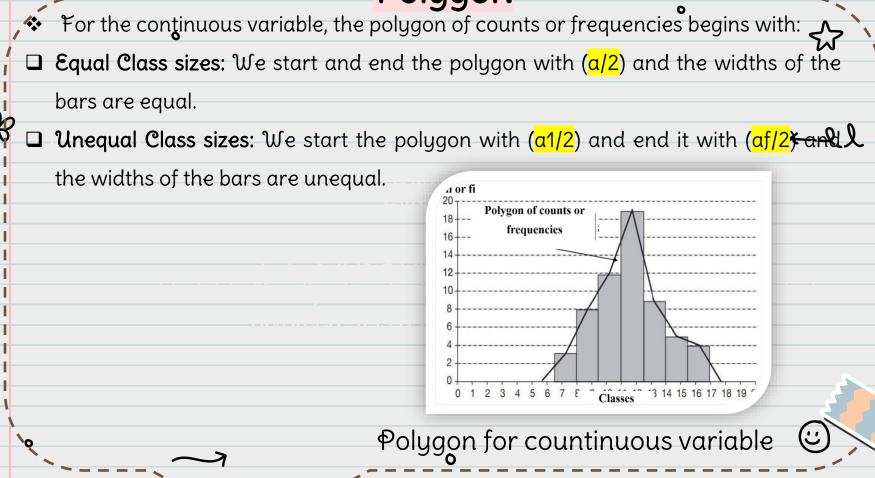
153	<mark>16</mark> 5	160	150	159	151	163	
160	158	149	<mark>154</mark>	153	163	140	
158	150	158	155	163	159	157	
162	160	152	164	158	153	162	
166	162	165	157	174	158	171	
162	155	156	159	162	152	158	
164	164	162	158	156	171	164	
158							

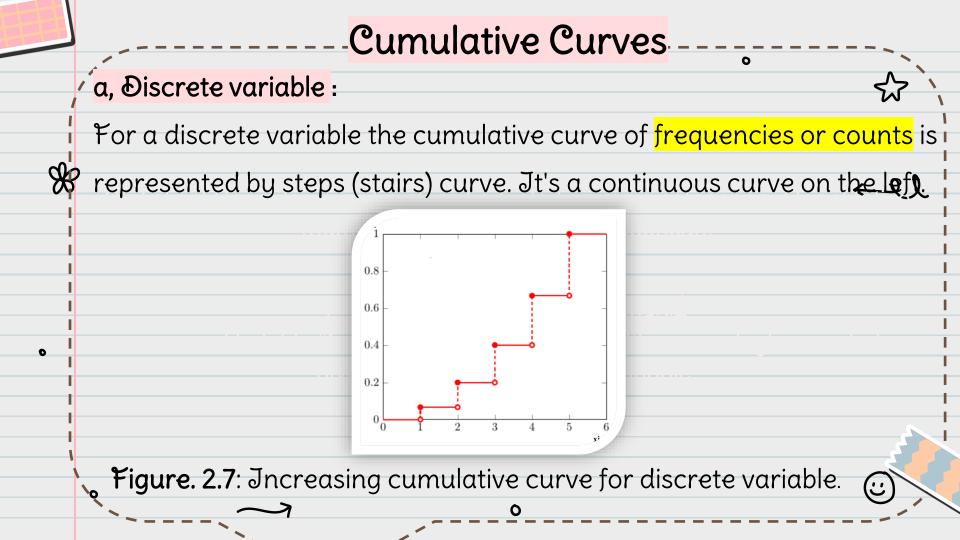
c, Sturges Rule:
Sturges Rule: k=1+3.322 log N=1 + (3,322 log 50) = 6,64= about 7 classes.
a: class size,
$$a = \frac{E}{k}$$

E: Range, $\mathcal{E} = \chi \max - \chi \min = 174 - 140 = 34$
 $a = \frac{E}{k} = \frac{34}{6.64} = 5.12 \sim 5$
Classes [140-145] [145-150] [150-155] [155-160] [160-165] [165-170] [170-175]
ni 1 1 9 17 16 3 3


Polygon

For the discrete variable, the polygon of counts or frequencies starts


at the top of the stick of the first value (x1) and ends with the top of


the stick of the last value (xf).

8

Polygon

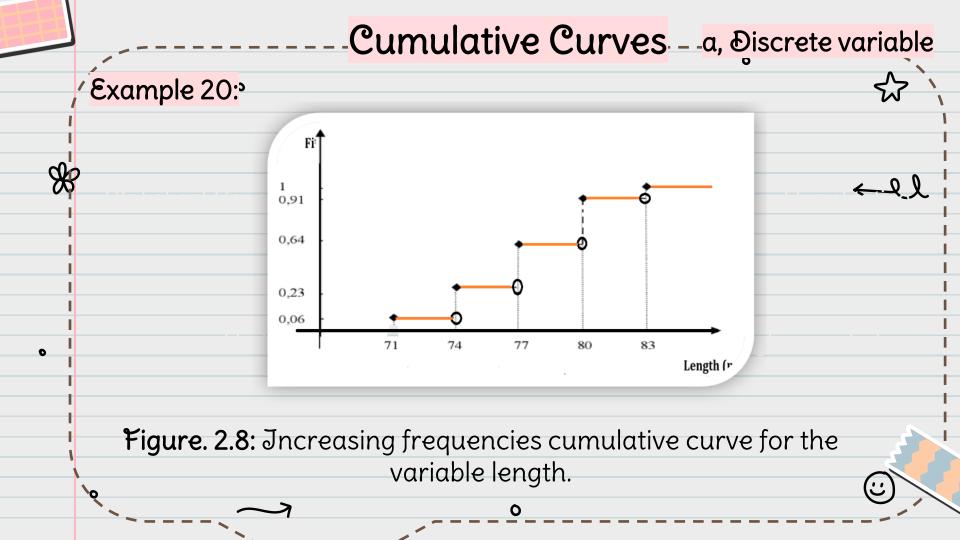
--Cumulative Curves ---a, Discrete variable

⁽Example 20:[»]

~

0

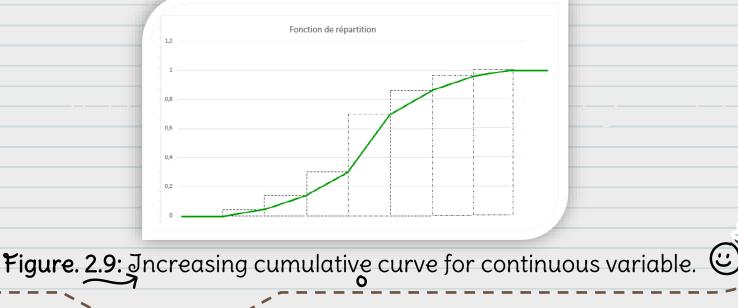
_	
ح^>	N.
ω	1


Length (m) X	71	74	77	80	83	Total
Counts (ni)	6	17	41	27	9	
Cumulative Count (Ni)						
Frequencies (fi)						
Cumulative frequencies (¥i)						
		0				<u> </u>

-Cumulative Curves - -a, Discrete variable

⁽Example 20:[»]

0


Length (m) X	71	74	77	80	83	Total
Counts (ni)	6	17	41	27	9	100
Cumulative Count (Ni)	6	23	64	91	100	
Frequencies (fi)	0.06	0.17	0.41	0.27	0.09	1
Cumulative frequencies (Fi)	0.06	0.23	0.64	0.91	1	

-Cumulative Curves

b, Continuous variable :

The cumulative curve of a continuous variable is obtained by plotting the points whose x-coordinates represent the upper bound of each class and the y-coordinates the corresponding cumulative frequencies or counts, and the connecting these points by line segments.

-Cumulative Curves

b, Continuous variable ;

The cumulative count curve can be thought of as the graph of a

, function, called the cumulative count function and designated by N(x),

defined on \mathbb{R} and with values in the interval [0, n].

0

0

$N: \mathbb{R} \rightarrow [0,n]$

Similarly, the cumulative frequency curve can be thought of as the

graph of a function, called the cumulative frequency function and

denoted by F(x), defined on R and with values in the interval [0, 1].:

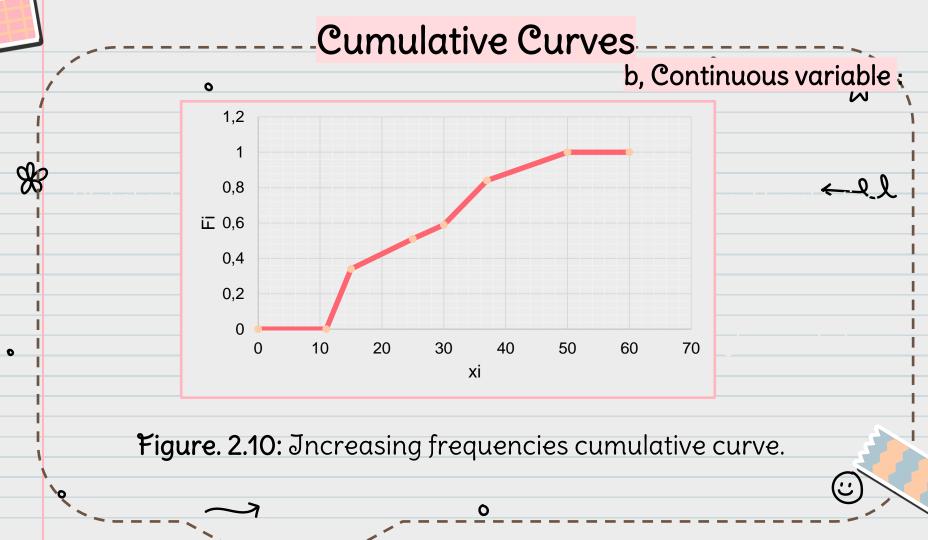
$$F: \mathbb{R} \to [0,1]$$
$$x \mapsto F(x)$$

	Cumulative Curves												
1	b, Continuous variable												
	Example 21:												
*	We consider the age of the inhabitants of a neighborhood. $\leftarrow \mathcal{L}$												
i	Classes	[11-15[[15-25[[25-30[[30-37[[37-50]	Total						
i	ni (Counts)	20	10	5	15	10	60	i					
1	Ni (Cumulative							 					
1	Count)												
1	fi (Frequencies)												
	Fi												
i													
				0									

-Cumulative Curves

b, Continuous variable ;

Example 21:


X

0

0

We consider the age of the inhabitants of a neighborhood.

												Y Y	
Classes	[1	11-15[[15-25[[25-30[[30-37[[37-50)]	Total	
ni (Counts)	1	20	1	10	1	5	1	15	1	10		60	
Ni (Cumulative	1	20		30		35		50		60			
Count)			1		/		1		/				
fi (Frequencies)		0.34	Γ	0.17		0.08	Γ	0.25		0.16		1	
Fi		0.34		0.51		0.59		0.84		1			
F(x) 0		0.34		0.51		0.59		0.84			1		

