Abdelhafid Boussouf University Center, Mila Institute of Mathematics and Computer Sciences First year of Computer Science License 2024/2025

Algebra I, Worksheet 2

Exercise $n^{\circ}1$: Let the set $A = \{1, 2, 3\}$. Are the following assertions true?

 $3 \in A$, $3 \subset A$, $\phi \in A$, $\{\{1, 2\}, 3\} = A$, $\{1, 2\} \subset A$, $A \cup \{\phi\} = A$

Exercise $\mathbf{n}^{\circ}2$: Let *A* and *B* be two sets.

1. Prove the following properties :

a. if $A \subset B$, then $\mathcal{P}(A) \subset \mathcal{P}(B)$.

b. $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

c. $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$.

2. Find two sets *A* and *B* such that $\mathcal{P}(A \cup B) \not\subset \mathcal{P}(A) \cup \mathcal{P}(B)$.

Exercise n°3 : Let *A*, *B*, and *D* be three subsets of a set *E*.

a. Prove the following properties :

$$1. A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \qquad 2. A \subset B \Longrightarrow C_E^B \subset C_E^A \qquad 3. A \setminus (A \cap B) = A \setminus B$$

4.
$$A \setminus (B \cap D) = A \setminus B \cup A \setminus D$$
 5. $A \triangle B = (A \cup B) \setminus (A \cap B)$

b. Determine the following sets :
$$A \triangle A$$
, $A \triangle \phi$, $A \triangle E$, $A \triangle C_{F}^{A}$.

Exercise $\mathbf{n}^{\circ}4$: Let A, B and C be three subsets of a non-empty set E. Define P(A, B) as the assertion " $\forall x \in E : (x \in A \implies x \notin B)$ " and Q(A, B) as the assertion " $\exists x \in E : (x \in A \land x \notin B)$ ". 1. Express P(A, B) in terms of a relationship between sets.

- 2. Write the negation non(P(A, B)) and express it in terms of a relationship between sets.
- 3. What can be concluded about A and B if they satisfy both P(A, B) and $P(C_E^A, C_E^B)$?

4. What can be concluded about *A* and *B* if they satisfy both *non* (*Q*(*A*, *B*)) and *non* (*Q*(*B*, *A*))? <u>Exercise $\mathbf{n}^\circ 5$: Determine whether \mathfrak{R} is reflexive, symmetric, antisymmetric, or transitive. 1. $\forall x, y \in \mathbb{Z} : x\mathfrak{R}_1 y \iff x = -y$.</u>

2.
$$\forall x, y \in \mathbb{R} : x \mathfrak{R}_2 y \iff \cos^2 x + \sin^2 y = 1.$$

3. $\forall x, y \in \mathbb{R} : x \mathfrak{R}_3 y \iff |x| = |y|.$

Exercise $n^{\circ}6$: Let \Re be a binary relation defined on the set \mathbb{Z} as follows

 $\forall x, y \in \mathbb{Z} : x \Re y \Longleftrightarrow \exists k \in \mathbb{Z} : x + 2y = 3k.$

1. Show that \mathfrak{R} is an equivalence relation on the set \mathbb{Z} .

2. Let $x \in \mathbb{Z}$. Determine the equivalence class of x, denoted by \dot{x} .

3. Determine the quotient set \mathbb{Z}/\mathfrak{R} .

Exercise $n^{\circ}7$: We define a relation \mathfrak{R} on \mathbb{N}^* as follows

$$\forall x, y \in \mathbb{N}^* : x \Re y \Longleftrightarrow \exists n \in \mathbb{N}^* : y = x^n.$$

This relation can also be expressed as "*y* is a non-zero integer power of *x*".

1. Show that \mathfrak{R} is a partial order relation on \mathbb{N}^* .

2. Let $A = \{2, 4, 16\}$ be a subset of \mathbb{N}^* . Examine the existence of a greatest element and a least element in *A* (denoted *max*(*A*) and *min*(*A*)) with respect to the relation \mathfrak{R} .

Exercice n°8 : (Supplementary Exercise)

Let *E* be a set, and let $A \subset E$. We define a binary relation \mathfrak{R} on $\mathcal{P}(E)$ (the power set of *E*, which is the set of all subsets of *E*) as follows

$$\forall X, Y \in \mathcal{P}(E) : X \mathfrak{R} Y \Longleftrightarrow X \cap A = Y \cap A.$$

1. Show that \mathfrak{R} is an equivalence relation on $\mathcal{P}(E)$.

2. Let *X* be a subset of *E*. Denote by \dot{X} the equivalence class of *X* for the relation \mathfrak{R} . Determine the equivalence classes of ϕ , *A*, *E*, \bar{A} (\bar{A} the complement of *A*).