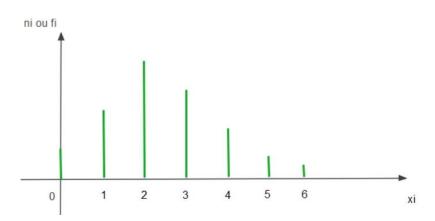
2 Case of a quantitative variable:

- a. Discrete variable:
- **Bar chart:** We associate a vertical segment whose height is proportional to the known value (count or frequency).



Example 16:

Here is the distribution of marks of a test marked out of 5 for a class.

Marks	1	2	3	4	5
Count	2	4	3	7	8

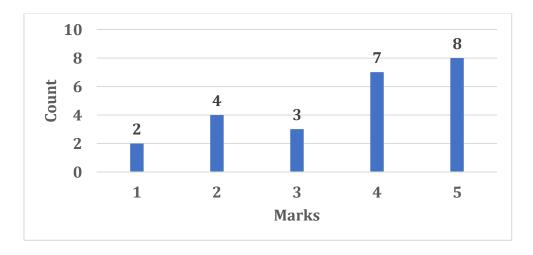


Figure. 2.4: Bar chart shown the marks of a test marked out for a class.

b. Continuous variable:

• Histogram:

A histogram is a pictorial representation of the numerical data with rectangular bars.

a. Equal Class sizes:

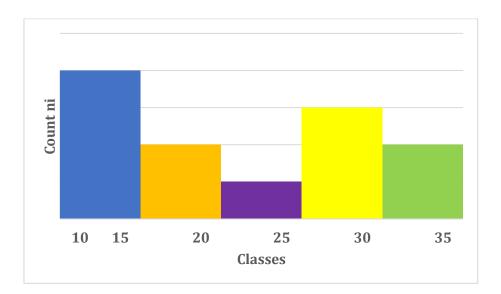
The classes will be represented on the x-axis, and above each of them, we draw a rectangle whose area is proportional to the associated frequency fi or the count ni.

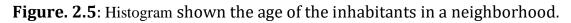
- A class is a bounding interval [b_i, b_{i+1}[
- The class center is: $Ci = \frac{bi+bi+1}{c}$
- The class size is: $a_i = b_{i+1} b_i$

Example 17:

We consider the age of the inhabitants in a neighborhood.

Classes	[10-15[[15-20[[20-25[[25-30[[30-35]
ni (Counts)	20	10	5	15	10
fi (Frequencies)	0.33	0.16	0.08	0.25	0.16
ai (Class size)	5	5	5	5	5





b. Unequal Class sizes:

The classes will be represented on the x-axis, and above each of them, we draw a rectangle whose area is proportional to:

- The rectified frequency fi' or the rectified count ni'.
- The density of frequency or the density of counts.
- Rectified count (ni') and frequency (fi') are computed by using the following formula:

Rectified frequency (or count) = Minimum class size * Frequency (or count) of the class Class size

- The density of the count (di): it is used for a count histogram, the height of the rectangle corresponding to class i is therefore given by: $di = \frac{ni}{di}$
- The density of the frequency (di): it is used for a frequency histogram; it is given by: $di = \frac{fi}{gi}$

Example 18:

We consider the age of the inhabitants of a neighborhood.

Classes	[11-15[[15-25[[25-30[[30-37[[37-50]
ni (Counts)	20	10	5	15	10
fi (Frequencies)	0.33	0.16	0.08	0.25	0.16
ai (Class size)	4	10	5	7	13
ni' (Rectified ni)	$\frac{4*20}{4} = 20$	$\frac{4*10}{10} = 4$	$\frac{4*5}{5} = 4$	$\frac{4*15}{7} = 8.5$	$\frac{4*10}{13} = 3$

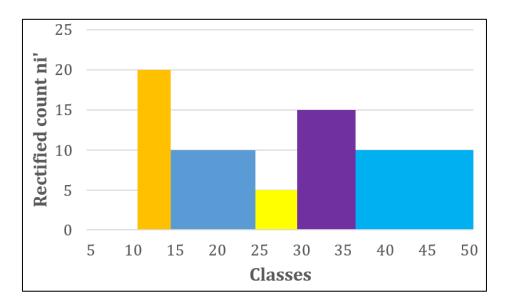


Figure. 2.6: Histogram shown the age of the inhabitants in a neighborhood.

c. Sturges Rule: (Transform the discrete quantitative variable into a continuous quantitative variable)

In case we have more than 20 modalities, we should use too many bins in the graphical representations, we may just be visualizing the noise in a dataset. By chance, we can use a method known as Sturges' Rule to determine number of classes to use in a histogram or frequency distribution table. Class formation involves transforming data into continuous distribution.

For grouping data (for quantitative variable), we should respect these points:

- The number of classes should be between five and twenty classes.
- Each piece of data must belong to one, and only one, class.
- Whenever feasible, all classes should have the same width (class size).

Sturge's Rule: $k = 1 + 3.322 \log N$

k: Number of Classes (Rounded to the nearest integer)

N: Total number of observations

The classes are chosen of equal class sizes interval: $a = \frac{E}{R}$

a: class size

E: range

E= Xmax - Xmin (Difference Between Largest and Smallest Observation)

Example 19:

Train classes for these observations:

153	1 <mark>6</mark> 5	160	150	159	151	163	
160) 158	149	<mark>15</mark> 4	153	163	140	
158	3 <mark>15</mark> 0	158	155	163	159	<mark>1</mark> 57	
162	2 160	152	164	158	153	162	
166	5 162	165	157	174	158	171	
162	2 155	156	159	162	152	158	
164	164	162	<mark>158</mark>	156	171	164	
158	3						

Sturges Rule: k=1+3.322 logN=1 + (3,322 log 50) = 6,64= about 7 classes.

a: class size, $a = \frac{E}{k}$

E: Range, E= Xmax -Xmin = 174 – 140 = 34

$$a = \frac{E}{k} = \frac{34}{6.64} = 5.12 \sim 5$$

Classes	[140-145[[145-150]	[150-155[[155-160[[160-165]	[165-170]	[170-175]
ni	1	1	9	17	16	3	3