Serie No. 1

Exercice 1

Une solution d'acide phosphorique commerciale contient 75% en masse de H₃PO₄ et sa masse volumique est 1.57 g/mL. Quelles sont la concentration molaire, la normalité, la molalité la fraction molaire et le pourcentage molaire de H₃PO₄ dans cette solution commerciale.

Exercice 2

La mesure de la conductivité d'une solution de chlorure de potassium $K^+ + Cl^-$ de concentration C donne 1,224 mS. cm^{-1} à 21°C.

- 1- Exprimer σ la conductivité en $.m^{-1}$.
- **2-** On donne les valeurs suivantes :

```
\lambda_{Cl-} = 7,63 \text{ mS. } m^2. \text{ mol}^{-1} \text{ ; } \lambda_{K+} = 7,35 \text{ mS. } m^2. \text{ mol}^{-1}
```

- 2.1. Que représente la lettre λ ?
- 2.2. Donner ces valeurs en m^2 . mol^{-1} .
- 2.3. En déduire la concentration C en $mol. L^{-1}$.

Exercice 3

On a dissous une quantité inconnue m_{LiCl} de chlorure de lithium dans une fiole jaugée de 200 mL.

Données : Conductivités molaires à 25°C, $\lambda_{Li+}=3,86$ mS.m²/mol⁻¹; $\lambda_{Cl-}=7,63$ mS.m².mol⁻¹ Masses molaire : $M_{Li}=6,9$ g.mol⁻¹, $M_{Cl}=35,5$ g.mol⁻¹

- a) Déterminer la concentration C, en mol.L⁻¹, de cette solution sachant qu'à 25 °C sa conductivité est $\sigma = 34,5$ mS.cm⁻¹ (on a préalablement étalonné le conductimètre).
- b) Quelle masse m_{LiCl} a été mise dans la fiole jaugée ?

Exercice 4

Une solution de chlorure de potassium KCl a une concentration $C=5.10^{-3}$ mol. L^{-1}

- 1. Ecrire l'équation de la réaction de dissolution dans l'eau du chlorure de potassium.
- 2. La dissolution est totale. Calculer, en mol.m⁻³, les concentrations dans la solution des ions K⁺ et Cl⁻ ? Justifier clairement votre réponse.
- 3. Calculer la conductivité de la solution.

Données : conductivités molaire ioniques: $\lambda_{\text{CI}} = 7,63.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$, $\lambda_{K+} = 7,4.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$

Exercice 5

On dissout 0,5 g de nitrate de calcium Ca(NO₃)₂ dans une fiole jaugée de 200 mL.

Données: masse molaire: $M_{Ca(NO3)2} = 164$ g/mol.

Conductivités molaires à 25°C : $\lambda_{Ca2+} = 11,90 \text{ mS.m}^2$. mol^{-1} ; $\lambda_{NO3-} = 7,14 \text{ mS.m}^2$. mol^{-1} Conductivités molaires à 20°C : $\lambda_{Ca2+} = 7,44 \text{ mS.m}^2$. mol^{-1} ; $\lambda_{NO3-} = 6,43 \text{ mS.m}^2$. mol^{-1}

- a) Indiquer les ions présents en solution et calculer leurs concentrations.
- b) Calculer la conductivité σ à 25 °C et 20°C. Expliquer la différence de résultat.

Exercice 6

On mélange un volume $V_1 = 200 \ mL$ de solution de chlorure de potassium $(K^+ + Cl^-)$ à concentration $C_1 = 5,0.10^{-3} \ mol/L$ et un volume $V_2 = 800 \ mL$ de solution de chlorure de sodium $(Na^+ + Cl^-)$ à concentration $C_2 = 1,25.10^{-3} \ mol/L$.

- 1- Quelle est la conductivité de la solution obtenue ?
- 2- Dans le mélange précédent, on place la cellule d'un conductimètre. La surface des électrodes est de $1,0cm^2$ et la distance qui les sépare est de 1,1 cm.
 - 2.1. Quelle est la valeur de la conductance ?

Donnés:

$$\lambda_{Na+} = 5,01.10^{-3} \text{ S. } m^2/\text{ mol}$$

 $\lambda_{Cl-} = 7,63.10^{-3} \text{ S. } m^2/\text{ mol}$
 $\lambda_{K+} = 7,35.10^{-3} \text{ S. } m^2/\text{ mol}$

Exercice 7

- 1- A l'aide d'une cellule, on détermine la conductance d'une solution S1 de chlorure de sodium NaCl de concentration $c = 5.10^{-3} \ mol/L$; on a trouvé $G = 5.45.10^{-3} \ S$
 - 1.1- Ecrire l'équation de la réaction de dissociation du chlorure de sodium dans l'eau.
- 1.2- La dissociation de NaCl est totale. Déterminer les concentrations en mol/L puis en mol/m^3 des ions Na^+ et Cl^- . La réponse sera clairement justifiée.
 - 1.3-Déterminer la conductivité de la solution.
- 1.4- K = L/S (L : distance entre les électrodes, S surface immergée d'une électrode) est appelée « constante de la cellule ». Déterminer K.

Donnés:

$$\lambda_{Na+} = 3.87.10^{-3} \text{ S. } m^2. \text{ mol}$$

 $\lambda_{Cl-} = 7.63.10^{-3} \text{ S. } m^2/ \text{ mol}$