
Chapter 2

Concepts of Algorithm and Program

1

Computer Science

It can be said that whatever activity a human being or
machine do for achieving a specified objective comes
under problem solving.

I. Problem solving

II. ALGORITHM

The word “algorithm” relates to the name of the
mathematician Al-khowarizmi, which means a
procedure or a technique. Software Engineer commonly
uses an algorithm for planning and solving the
problems. An algorithm is a sequence of steps to solve a
particular problem or algorithm is an ordered set of
unambiguous steps that produces a result and
terminates in a finite time.

An algorithm consists of a structured sequence of instructions

II. ALGORITHM
Algorithm has the following characteristics
• Input: An algorithm may or may not require input
• Output: Each algorithm is expected to produce at least one result
• Definiteness: Each instruction must be clear and unambiguous
• Finiteness: If the instructions of an algorithm are executed, the

algorithm should terminate after finite number of steps

The algorithm should
be written in such a
way that, it can be
used in similar
programming
languages.

II. ALGORITHM

HOW TO WRITE ALGORITHMS?

Step 1
Define your algorithms input: Many algorithms take in data to be processed, e.g. to
calculate the area of rectangle input may be the rectangle height and rectangle
width.

Step 2

Step 3

Step 4

Define the variables: Algorithm's variables allow you to use it for more than one
place. We can define two variables for rectangle height and rectangle width as
HEIGHT and WIDTH (or H & W). We should use meaningful variable name e.g.
instead of using H & W use HEIGHT and WIDTH as variable name.

Outline the algorithm's operations: Use input variable for computation purpose,
e.g. to find area of rectangle multiply the HEIGHT and WIDTH variable and store the
value in new variable (say) AREA. An algorithm's operations can take the form of
multiple steps and even branch, depending on the value of the input variables.

Output the results of your algorithm's operations: In case of area of

rectangle output will be the value stored in variable AREA. if the input

variables described a rectangle with a HEIGHT of 2 and a WIDTH of 3, the

algorithm would output the value of 6.

II. ALGORITHM
Examples of Algorithms in Programming

Example 1:

Write an algorithm to add two numbers
entered by user Step 1: Start

Step 2: Declare variables num1, num2 and
sum.
Step 3: Read values num1 and num2.
Step 4: Add num1 and num2 and assign the
result to sum.
Sum = num1+num2
Step 5: Display sum
Step 6: Stop

II. ALGORITHM
Examples of Algorithms in Programming

Example 2:

Write an algorithm to find the largest among three different
numbers entered by user. Step 1: Start

Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
If a>c
Display a is the largest number.
Else
Display c is the largest number.
Else
If b>c
Display b is the largest number.
Else
Display c is the greatest number.
Step 5: Stop

III. Representation of Algorithms: flowchart

The flowchart is a diagram which visually presents the flow of data
through processing systems. This means by seeing a flow chart one can
know the operations performed and the sequence of these operations
in a system. Algorithms are nothing but sequence of steps for solving
problems. So a flow chart can be used for representing an algorithm. A
flowchart, will describe the operations (and in what sequence) are
required to solve a given problem. You can see a flow chart as a
blueprint of a design you have made for solving a problem.

A flowchart is a diagram made up of boxes, diamonds and other
shapes, connected by arrows. Each shape represents a step of the
solution process and the arrow represents the order or link among the
steps.

III. Representation of Algorithms: flowchart
 There are standardised symbols to draw flowcharts

III. Representation of Algorithms: flowchart
 There are standardised symbols to draw flowcharts

III. Representation of Algorithms: flowchart

Example 1: Flowchart for an algorithm which gets two numbers and prints sum of their value

Read num1 & num2
(input)

Sum = num1 + num2

Print sum
(output)

Stop

Start

Example 2: Flowchart for an algorithm find the greater number between two numbers

Start

Read A & B
(input)

If A > B

Stop

Print B
(output)

Print A
(output)

False True

III. Representation of Algorithms: flowchart

IV. Coding

Once an algorithm is finalised, it should be coded in
a high-level programming language as selected by
the programmer. The ordered set of instructions are
written in that programming language by following
its syntax. Syntax is the set of rules or grammar that
governs the formulation of the statements in the
language, such as spellings, order of words,
punctuation, etc.

The machine language or low level language consisting of 0’s and 1’s
only is the ideal way to write a computer program. Programs written
using binary digits are directly understood by the computer
hardware, but they are difficult to deal with and comprehend by
humans. This led to the invention of high-level languages which are
close to natural languages and are easier to read, write, and
maintain, but are not directly understood by the computer hardware.
An advantage of using high-level languages is that they are portable,
i.e., they can run on different types of computers with little or no
modifications. Low-level programs can run on only one kind of
computer and have to be rewritten in order to run on another type of
system. A wide variety of high-level languages, such as FORTRAN, C,
C++, Java, Python, etc., exist.

IV. Coding

IV. Coding
A program written in a high-level language is called source code.

We need to translate the source code into machine language
using a compiler or an interpreter, so that it can be understood
by the computer.

Creating and Running Programs
There are four steps in this process.
1. Writing and editing the program using Text editor (source

code).
2. Compile the program using any C compiler.(.bak file)
3. Linking the program with the required library modules(object

file)
4. Executing the program. (.Exe file)

 Creating and Editing a C Program in C Programming
Language compiler:

IV. Coding

What is C?

C is a programming

language developed

at AT & T‟s Bell

Laboratories of

USA in 1972. It

was designed and

written by Dennis

Ritche.

IV. Coding
General Structure of a C program:

A C program basically consists of the following parts:
• Preprocessor Commands
• Functions
• Variables
• Statements & Expressions
• Comments

IV. Coding

General Structure of a C program:
The various parts of the above program:
1. The first line of the program #include <stdio.h> is a preprocessor command,

which tells a C compiler to include stdio.h file before going to actual
compilation.

2. The next line int main() is the main function where the program execution
begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put to add
additional comments in the program. So such lines are called comments in the
program.

4. The next line printf(...) is another function available in C which causes the
message "Hello, World!" to be displayed on the screen.

5. The next line return 0; terminates the main() function and returns the value 0.

v.Basic data types in C, Variables and Constants

A data type is a classification of data which tells the compiler
or interpreter how the programmer intends to use the data.
Most programming languages support various types of data,
including integer, real, character or string, and Boolean.

Basic data types

v.Basic data types in C, Variables and Constants
Basic data types

Size and Ranges of Data Types with Type Qualifiers

 Variables

 A variable is a name of memory location. It is used to store data.
Variables are changeable, we can change value of a variable
during execution of a program. It can be reused many times.

 A variable definition tells the compiler where and how much
storage to create for the variable. A variable definition specifies
a data type and contains a list of one or more variables of that
type.

v.Basic data types in C, Variables and Constants

v.Basic data types in C, Variables and Constants

 Variables

1. A variable name contains maximum of 30 characters/ Variable
name must be upto 8 characters.

2. A variable name includes alphabets and numbers, but it must
start with an alphabet.

3. It cannot accept any special characters, blank spaces except
under score(_).

4. It should not be a reserved word.

Ex : i rank1 MAX min Student_name StudentName
class_mark

Rules to write variable names:

v.Basic data types in C, Variables and Constants

Declaration of Variables : A variable can be used to store a value of
any data type. The declaration of variables must be done before
they are used in the program. The general format for declaring a
variable.

Syntax : data_type variable-1,variable-2,------, variable-n;
Variables are separated by commas and declaration statement ends with a
semicolon.
Ex : int v;
int x,y,z;

float a,b;
char m,n;

 Variables

v.Basic data types in C, Variables and Constants

 Variables

Assigning values to variables : values can be assigned to variables
using the assignment operator (=). The general format statement
is :
Syntax : variable = value;
Ex : x=100;
a= 12.25;
m=‟f‟;

v.Basic data types in C, Variables and Constants

Variable initialization:
When we assign any initial value to variable during the
declaration, is called initialization of variables. When variable
is declared but contain undefined value then it is called
garbage value. The variable is initialized with the assignment
operator such as
Data type variable name = constant;
Example: int a=20;
Or int a;
a=20;

 Variables

v.Basic data types in C, Variables and Constants

 Variables

Expressions
An expression is a combination of variables, constants,
operators and function call. It can be arithmetic, logical
and relational for example:
int z= x+y // arithmatic expression
a>b //relational
a==b // logical
cos(a) // function call

v.Basic data types in C, Variables and Constants

 Constants

Constants refer to fixed values that do not change during
the execution of a program.

You can use const prefix to declare constants with a
specific type as follows:

const type variable = value;

example:
const int i = 18;
const float Pi = 3,14;

VI.Operators: Arithmetic, Relational, Assignment And
Logical

This is a symbol use to perform some operation on
variables, operands or with the constant. Some operator
required 2 operand to perform operation or Some
required single operation.
Several operators are there those are, arithmetic
operator, assignment, increment , decrement, logical,
relational and others.

VI.Operators: Arithmetic, Relational, Assignment And
Logical

1. Arithmatic Operator

C= A+B;

C= A-B;

C= A*B;

C= B/A;

C= B%A;

2. Relational Operators

VI.Operators: Arithmetic, Relational, Assignment And
Logical

int A=10, B=21;

3. Assignment Operator

VI.Operators: Arithmetic, Relational, Assignment And
Logical

A value can be stored in a variable with the use of
assignment operator. The assignment operator(=) is used in
assignment statement and assignment expression.
Operand on the left hand side should be variable and the
operand on the right hand side should be variable or
constant or any expression. When variable on the left hand
side is occur on the right hand side then we can avoid by
writing the compound statement. For example:
int x= y;
int Sum = x + y + z;

VI.Operators: Arithmetic, Relational, Assignment And
Logical

4. Logical or Boolean Operator

Operator used with one or more operand and return either
value zero (for false) or one (for true). The operand may be
constant, variables or expressions. And the expression that
combines two or more expressions is termed as logical
expression. C has three logical operators :

Operator Meaning
&& AND
|| OR
! NOT

VII. Input / Output (I/O) Functions in C

In „C‟ language, two types of Input/Output functions are available,
and all input and output operations are carried out through function
calls. Several functions are available for input / output operations in
„C‟. These functions are collectively known as the standard i/o
library.
Input: In any programming language input means to feed some data
into program. This can be given in the form of file or from command
line.
Output: In any programming language output means to display some
data on screen, printer or in any file.

Printf and scanf

printf and scanf are two standard C programming
language functions for input and output. Both are
functions in the stdio library which means
#include <stdio.h>

is required at the top of your file.

VII. Input / Output (I/O) Functions in C

printf() function is used to print/display values of
variables using the standared output device (monitor).
Syntax : printf(" format string " , variable_1,-------, variable_n);

where variable_1, ,-------, variable_n are variables whose
values are to be display in the monitor.

" format string " is the control string which represents the
format specification.

VII. Input / Output (I/O) Functions in C

VII. Input / Output (I/O) Functions in C

output

Example1: printf("Hello");

Example2: int number = 9;
printf("%d", number);

output

Example3: int number = 9;
printf(" number = %d", number);

output

VII. Input / Output (I/O) Functions in C

output

Example4: printf("%d");

Example5: float Pi = 3,14;
printf("The value of Pi is %f", Pi);

output

Example6: char [255] word ="Hello";
printf("%s", word);

output

VII. Input / Output (I/O) Functions in C

Some commonly used format specifiers for qualified numbers
with printf() are listed below:

Note: you use the escape sequence "\n" to represent a new line
or line break. It's a common way to indicate that text should
continue on a new line.

VII. Input / Output (I/O) Functions in C

2. scanf() function is used to read/input values of variables
using the standared input device (keyboard). It has the
following form
Syntax :
scanf("control string ",&var_1, &var_2,----, &var_n);

where var_1, var_2, . . . , var_n are variables whose values are to
be read from the keyboard.
"format string" is the control string which represents the format
specification.
The symbol & (ampersand) represents the memory address where
the variable value is to be stored.

VIII.Mathematical functions in C

In C, you can define and use mathematical functions by
including the header:
#include <math.h>
which provides a wide range of mathematical functions.

Power and Square Root Functions:

pow(x, y): Calculates x raised to the power of y.

flaot result1;
result1 = pow(2, 3); // result1 = 8.0
flaot result2;
result2 = sqrt(16); // result2 = 4.0

VIII.Mathematical functions in C

Trigonometric Functions:

•sin(x): Calculates the sine of x (in radians).
•cos(x): Calculates the cosine of x (in radians).
•tan(x): Calculates the tangent of x (in radians).
•asin(x): Calculates the arcsine (inverse sine) of x.
•acos(x): Calculates the arccosine (inverse cosine) of x.
•atan(x): Calculates the arctangent (inverse tangent) of x.

Exponential and Logarithmic Functions:

VIII.Mathematical functions in C

•exp(x): Calculates the exponential function e^x.
•log(x): Calculates the natural logarithm (base e) of x.
•log10(x): Calculates the base-10 logarithm of x.

Absolute Value Functions:
•fabs(x): Calculates the absolute value of x.

IX. Conditional Statements

Control statements control the flow of execution of the
statements of a program. The various types of control
statements in C language are as under:

1) Sequential actions.
2) Conditional actions.
3) Repeat actions.

Sequential control: In sequential control, the C program
statements are executed sequentially i.e., one after the another
from beginning to end.

Start

Statement1

Statement2

StatementN

Stop

IX. Conditional Statements

IX. Conditional Statements
Sequential control

Example :
#include<stdio.h>
int main()
{
float x , y, z;
x=3.5;
y=x+10;
y=y-x;
x=1;
z=y/x+2.5;
getch();
return 0;
}

Execution trace:

x y z

Begin ? ? ?

1 3.5 ? ?

2 3.5 13.5 ?

3 3.5 10.0 ?

4 1.0 10.0 ?

5 1.0 10.0 12.5

end 1.0 10.0 12.5

Conditional Control (Selection Control or Decision Control) : In
conditional control , the execution of statements depends upon the
condition-test. If the condition evaluates to true, then a set of
statements is executed otherwise another set of statements is
followed. This control is also called Decision Control because it helps
in making decision about which set of statements is to be executed.

IX. Conditional Statements

Decision control structure in C can be implemented by using:
• if statement
• if-else statement
• Nested if else statement
• case control structure

 It consists of two parts: condition and action.
 The (condition) part describes a state which can be true or false (Boolean type

expression).
 The <Action Block> part represents a piece of an algorithm (one or more instructions).

IX. Conditional Statements

Syntax:
……….
if(condition)
{
<Action Block (statements) > ;
}
……….

Simple conditional action: if statement

IX. Conditional Statements
Simple conditional action: if statement

#include<stdio.h>
int main()
{
float nbr;
scanf("%f ",& nbr);
if (nbr<0)
{
nbr=-nbr;
}
printf(" %f", nbr);
getch();
return 0;
}

Example: Write a C program that reads a real number identified by
“nbr”, then gives its absolute value.

IX. Conditional Statements
Alternative action: if-else statement: This is a bi-directional control
statement. This statement is used to test a condition and take one of the
two possible actions. If the condition evaluates to true then one statement
(or block of statements) is executed otherwise other statement (or block of
statements) is executed.
Syntax:
………
If (condition)
{
< Block of (instructions) >
} actions1
else
{
< Block of actions2(instructions) >
}
………

IX. Conditional Statements
if-else statement:

#include<stdio.h>
int main()
{
float x,y,Max;
scanf("%f ",&x);
scanf("%f ",&y);
if (x>y)
{
Max=x;
}

Else
{
Max=y;
}
printf(« The biggest number is: %f ", Max);
getch();
return 0;
}

Example: Write an C program that reads two real numbers and
then determines the biggest of them?

IX. Conditional Statements

Nested if else statement:
If we have if-else statement within either the body of an if
statement or the body of else statement or in the body of both if
and else, then this is known as nesting of if else statement. The
general form of nested if-else statement is as follows:

If (condition1)
{

if (condition2)
{
statements;
}
else
{
statements;
}

}

else
{

if (condition3)
{
statements;
}
else
{
statements;
}

}

Nested if else statement:
IX. Conditional Statements

Example: program to find the largest of three numbers
#include<stdio.h>
int main()
{
int a, b,c,large;
printf(“enter the three numbers”);
scanf(“%d%d%d”,&a,&b,&c);
if(a>b)
{
if(a>c)
large=a;
else
large=c;
}

else

{

if(b>c)

large=b;

else

large=c;

}

printf(“largest number is %d”,large);

getch();

return 0;
}

IX. Conditional Statements

Multiple choice action: switch case statement

This statement is used to select one out of the several
numbers of alternatives present in a block. This
selection statement successively tests the value of an
expression against a list of integer or character
constants. When a match is found, the statements
associated with that constant are executed.

The general syntax of switch case statement is as follows:
switch(expression)
{
case constant1: statements;
case constant2: statements;
case constant3: statements;
………………………
………………………
case constantN: statements;
default : statement;
}

IX. Conditional Statements

Multiple choice action: switch case statement

IX. Conditional Statements

Multiple choice action: switch case statement
Example: program to print day of the week
#include<stdio.h>
int main()
{
int day;
printf("enter the day number from 1 to 7 \n");
scanf("%d",&day);
switch(day)
{
case 1: printf("monday");
break;
case 2:printf("tuesday");
break;
case 3: printf("wednesday");
break;

case 4: printf("thursday");
break;
case 5: printf("friday");
break;
case 6: printf("saturday");
break;
case 7: printf("sunday");
break;
default :printf("wrong input");
}
getch();
return 0;
}

Boolean Expression & Operators

IX. Conditional Statements

 Boolean expressions are written using Boolean
operators (AND) &&, (OR)|| and (NOT) !.

 Boolean expressions are the expressions that
evaluate a condition and result in a Boolean value
i.e true or false.

• (condition1 AND condition2)

Boolean Expression & Operators

IX. Conditional Statements

condition1 condition2 condition1 && condition2

true true true

true false false

false true false

false false false

• (condition1 OR condition2)
condition1 condition2 condition1 || condition2

true true true

true false true

false true true

false false false

Boolean Expression & Operators
IX. Conditional Statements

• NOT (condition)

Example:

float x,y,z;
x= 5;
y=2.1;
z=-4.5;

((x>y)&&(z==x))

(condition) ! (condition)

true false

false true

false

((x>y)||(z<x)) true

(!(x==y)&&(z<x)) true

X. Iteration Statements (loops)

 A loop is a statement whose job is to repeatedly
execute some other statement (the loop body).

 The looping can be defined as repeating the same
process multiple times until a specific condition
satisfies. It is known as iteration also.

 The looping simplifies the complex problems into the
easy ones.

 It enables to alter the flow of the program so that
instead of writing the same code again and again, we
can execute the same code for a finite number of times.

X. Iteration Statements (loops)

 For example, if we need to print “Hello” 10-times then,
instead of using the printf statement 10 times, we can
use printf once inside a loop which runs up to 10
iterations.

 There are three types of loops in C language those
are given below:

 while
 do while
 for

X. Iteration Statements (loops)

Essential components of a loop

 Counter
 Initialisation of the counter with initial value
 Condition to check with the optimum value of the

counter
 Statement(s) to be executed by iteration
 Increment/decrement

X. Iteration Statements (loops)

A.The while Statement
The while loop in c is to be used in the scenario where the block of
statements is executed in the while loop until the condition
specified in the while loop is satisfied. It is also called a pre-tested
loop.
syntax:
initialisation;
while(condition)
{
block of statements to be executed ;
Increment ;
}

X. Iteration Statements (loops)
A.The while Statement

Example: Write a C-program to print 10 natural numbers

#include<stdio.h>
int main ()
{
int i=1;
while (i<=10)
{
printf(’’%d\n’’,i);
i=i+1;
}
}

Output
1
2
3
5
6
7
8
9
10

A.The while Statement
X. Iteration Statements (loops)

Flowchart of while loop

B. The do-while Statement
X. Iteration Statements (loops)

The do-while loop continues until a given condition
satisfies. It is also called post tested loop. It is used when it
is necessary to execute the loop at least once (mostly
menu driven programs).
Syntax:
do
{
code to be executed ;
}
while(condition);

B. The do-while Statement
X. Iteration Statements (loops)

Example: Write a C-program to print 10 natural numbers

#include<stdio.h>
int main(){
int i=1;
do
{
printf("%d \n",i);
i++;
}
while(i<=10);
return 0;
}

Output
1
2
3
5
6
7
8
9
10

Flowchart of do while loop

B. The do-while Statement
X. Iteration Statements (loops)

C. The for Statement

The for loop in C language is used to iterate the
statements or a part of the program several times. It is
frequently used to traverse the data structures like the
array and linked list.
Syntax:
for(Expression1; Expression2; Expression3)
{
codes to be executed;
}

X. Iteration Statements (loops)

Expression 1
• Represents the initialization of the loop variable.
• More than one variable can be initialised.
Expression 2
• Expression 2 is a conditional expression. It checks for a specific
condition to be satisfied. If it is not, the loop is terminated.
• Expression 2 can have more than one condition. However, the
loop will iterate until the last condition becomes false.
Other conditions will be treated as statements.
Expression 3
• Expression 3 is increment or decrement to update the value of the
loop variable

C. The for Statement
X. Iteration Statements (loops)

C. The for Statement
X. Iteration Statements (loops)

Example: Write a C-program to print 10 natural numbers

#include<stdio.h>
int main(){
int i;
for(i=1;i<=10;i=i+1)
{
printf("%d\n", i);
}
return 0;
}

Output
1
2
3
5
6
7
8
9
10

C. The for Statement

Flowchart of for loop in C

X. Iteration Statements (loops)

