A.2.2 Graphical representations: bar chart, circular chart, bar chart. Polygon of counts (and frequencies). Histogram. Cumulative curves:

A.2.2.1 Case of a qualitative variable:

a. Pie (circle) chart:

A pie chart, sometimes called a circle chart, is a way of summarizing a set of data or displaying the different values of a given variable (e.g. percentage distribution). In This type of chart, the modalities are represented by an angular sector of a disk (or halfdisk), the angle of which is proportional to the count or frequency. So, we make a cross product to know the angle of each sector. In the case of a complete disk, we have the following correspondences:

$$\theta i = \frac{ni}{N} * 360^\circ = CP * ni = fi * 360^\circ$$

ni (n%) ----- θi

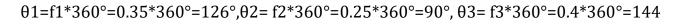
We can use the coefficient of proportionality: $CP = \frac{360}{N}$

Variable	X1	X2	X3	X4	Total	
Count	n ₁	n ₂	n ₃	n4	N	Coefficient of
frequency	$f_1 = n_1 / N$	$f_2 = n_2/N$	f ₃ = n ₃ /N	$F_4 = n_4 / N$	1	proportionality
Angles	$\Theta_1 = n_1 * CP$	$\Theta_2 = n_2 * CP$	$\Theta_3 = n_3 * CP$	$\Theta_4=n_4*CP$	360°	CP=360/N
Aligies	=f ₁ *360°	=f ₂ *360°	=f ₃ *360°	$=f_4*360^{\circ}$	300	

Example 13 :

The study regime was studied on a sample of 200 pupils from a high school, the results obtained are as follows:

• Make the Graphical Representation of this data in pie chart using frequencies.


Education regime	External	Internal	Half boarder
Number of pupils ni	70	50	80
Frequency fi	70/200=0.35	50/200=0.25	80/200=0.4

To make the pie chart of this data using frequencies, we must calculate the frequencies and the different angles θ i of each sector.

n ----- 360°

θi=ni/N*360°fi*360°

ni ----- di

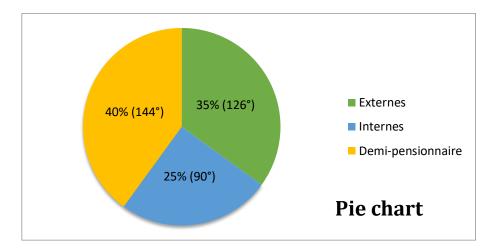


Figure. 2.1: Pie chart shown the study regime of 200 pupils from a high school.

b. Organ pipes:

We put the modalities on the x-axis, arbitrarily. We carry rectangles on the y-axis (vertically or horizontally) whose length is proportional to the counts, or frequencies, of each modality.

Example 14 :

A survey conducted in 2015 in Algiers on the distribution of blood groups yielded the following results:

Blood groups	А	В	AB	0
Counts	219	123	78	242

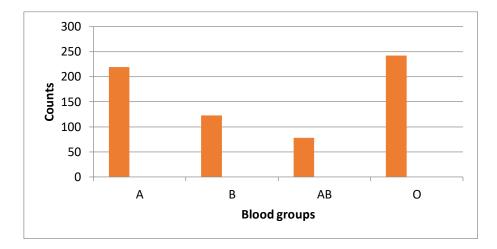
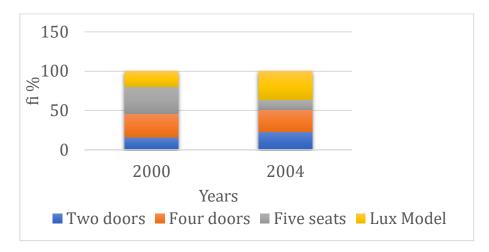


Figure. 2.2: Organ pipes shown the distribution of blood groups.


c. Band chart:

It consists to represent each modality in the same vertical band by a slice whose height corresponds to its frequency percentage.

Example 15 :

The sales made by a car manufacturing company during the years 2000 and 2004 are as follows:

Vehicles	2000		2004	
	ni	fi	ni	fi
Two doors	800	800/5000=0.16	1600	0.23
Four doors	1500	0.3	2000	0.28
Five seats	1700	0.34	900	0.13
Lux Model	1000	0.2	2500	0.36
total	5000	1	7000	1

Figure. 2.3: Band chart shown the sales made by a car manufacturing company.