Algebra I, Worksheet 1

Exercise n°1

I. Express symbolically, using quantifiers, the following assertions :

1. The square of every real number is a positive real number.

2. There is a positive integer whose square is equal to itself.

3. There are two different real numbers that have the same square.

4. Any real number has a cube root.

5. For every real number *x*, there exists at least one natural number greater than or equal to *x*.

II. In the library, let *S* denote the set of subscribers and *B* denote the set of books. Let *P* be the assertion : "the subscriber *s* likes the book *b*, denoted *sLb*". Translate each of the symbolic assertions into English sentence.

1. $\forall s \in S, \exists b \in B : sLb.$ 2. $\forall b \in B, \exists s \in S : sLb.$

3. $\exists b \in B, \forall s \in S : sLb$.

4. $\exists s \in S, \forall b \in B : sLb$.

<u>Exercise $n^{\circ}2$ </u>: Translate each of the following symbolic assertions into English sentences and indicate the truth value of each assertion. Then, write the negations of these assertions :

1. $\forall m \in \mathbb{Z}, \forall n \in \mathbb{Z} : m + n = 0.$ 2. $\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z} : m + n = 0.$ 3. $\exists m \in \mathbb{Z}, \forall n \in \mathbb{Z} : m + n = 0.$ 4. $\exists m \in \mathbb{Z}, \exists n \in \mathbb{Z} : m + n = 0.$ **Exercise n**°3 :

Using a truth table, prove the following logical equivalences for any three assertions *P*, *Q* and *R*.

(a). $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$ (This is the distributive law of conjunction over disjunction).

(b). $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$ (This is the distributive law of disjunction over conjunction).

(c). $\overline{(P \land Q)} \iff \overline{P} \lor \overline{Q}$ and $\overline{(P \lor Q)} \iff \overline{P} \land \overline{Q}$ De Morgan's Laws.

Exercise $n^{\circ}4$:Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Negate each of the following assertions.

 $\begin{aligned} &(a)\forall x \in \mathbb{R} : f(x) \neq 0. \\ &(b)\forall M > 0, \exists A > 0, \forall x \ge A : f(x) > M. \\ &(c)\forall x \in \mathbb{R} : f(x) > 0 \Longrightarrow x \le 0. \\ &(d)\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in I : |x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon. \end{aligned}$

<u>Exercise $\mathbf{n}^\circ 5$ </u>: Let $n \in \mathbb{Z}$ be an integer. Prove the following assertion using a proof by contrapositive : " If n^2 is an even integer, then n is even".

Exercise $\mathbf{n}^{\circ}6$: Show using a proof by contradiction that the square root of 2 is an irrational number, i.e $\sqrt{2} \notin \mathbb{Q}$.