
Chapitre 4

Rings of Polynomials

Introduction

In this chapter, we introduce the concept of polynomials over a field or a commu-
tative unitary ring. Throughout the chapter, K denotes a field and A denotes a
commutative unitary ring.

4.1 Definitions

Definition 4.1.

Let (A,+, ·) be a commutative unitary ring. A polynomial P in one indeterminate
X with coefficients in A is any algebraic expression of the form :

P = a0 + a1X + a2X
2 + . . .+ anX

n + . . .

where the coefficients ai ∈ A are zero for all but finitely many i.

Another definition is given by :

Definition 4.2.

A polynomial in one indeterminate x with coefficients in A is any sequence P =

(an)n∈N of elements from A, all zero from some point onwards.

1. The an are called the coefficients of P .
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2. The highest index n such that an 6= 0 (if it exists) is called the degree of P ,
denoted deg(P ). In this case, anXn is called the leading term of P .

3. If all coefficients ai are zero, P is called the zero polynomial, denoted 0, and
conventionally deg(0) = −∞.

4. If the leading term of P is 1Xn, then P is called monic.

5. Every element a ∈ A is a polynomial, called a constant polynomial.

6. The set of polynomials in one indeterminate X with coefficients in A is
denoted A[X].

Polynomials are equipped with the usual operations of addition, polynomial mul-
tiplication, and scalar multiplication by λ ∈ A : Let P = (an)n∈N, Q = (bn)n∈N be
two polynomials in one indeterminate with coefficients in A. Then :

1. P +Q = (an + bn)n∈N

2. PQ = (cn)n∈N where cn =
∑

0≤k≤n akbn−k

3. λP = (λan)n∈N

Definition 4.3.

The set A[X], consisting of polynomials in one indeterminate with coefficients in A,
equipped with the addition and multiplication defined above, forms a commutative
ring.

Proposition 4.4.

If A is an integral domain, then for all P,Q ∈ A[X], we have :

1. deg(PQ) = deg(P ) + deg(Q)

2. deg(P +Q) ≤ max(deg(P ), deg(Q))

Proof 4.5.

1. If one of the polynomials is zero, then PQ = 0 and deg(PQ) = −∞ which is
true. Assume both P and Q are non-zero. Let n = deg(P ) and m = deg(Q).
Write P =

∑
aiX

i and Q =
∑
biX

i with ai, bi ∈ A. Then the coefficient
of the leading term in PQ is anbm. Since an 6= 0 and bm 6= 0, and A is an
integral domain, we have anbm 6= 0, implying deg(PQ) = n+m.

2. Trivial.

Let U(A) denote the units (invertible elements) of A.
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Proposition 4.6.

If A is an integral domain, then the units of A[X] are exactly the constant poly-
nomials P = a where a ∈ U(A).

Proof 4.7.

Let P be invertible in A[X]. There exists Q ∈ A[X] such that PQ = 1. Thus,
deg(P ) + deg(Q) = 0 implies deg(P ) = deg(Q) = 0. Hence, P and Q are constant
invertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.8.

Two polynomials P and Q in A[X] are said to be associated if there exists a ∈ U(A)

such that P = aQ.

Example 4.1.

The set of polynomials associated with X2 + 1 in Z[X] is

{X2 + 1,−(X2 + 1)}

since the only units in Z are 1 and −1.

Proposition 4.9.

1. The relation "being associated" is an equivalence relation on A[X].

2. If P and Q are associated and have the same leading coefficient, then P = Q.

3. If A is a field, then every polynomial P is associated with a unique unitary
polynomial.

4.2.2 Division

Definition 4.10.

Let P,Q ∈ A[X]. We say that P divides Q, denoted as P |Q, if there exists R ∈
A[X] such that Q = PR.



Chapter 4. Anneaux de polynômes 92

Example 4.2.

1. The polynomial X − 1 divides X2 − 1 in Z[X].

2. The polynomial X − 3 does not divide X2 − 1 in Z[X].

Proposition 4.11.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|R, then P |R.

2. If P |Q and P |R, then P |(Q+R).

3. If P |Q and Q 6= 0, then deg(P ) ≤ deg(Q).

4. If P |Q and R|S, then PR|QS.

5. If P |Q, then P n|Qn for all n ≥ 1.

Proof 4.12.

See textbook.

Proposition 4.13.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|P , then P and Q are associated.

2. If P is associated with R and Q is associated with S, then P |Q ⇐⇒ R|S.

4.2.3 Euclidean Division

Théorème 4.14. (Euclidean Division)
Let A,B ∈ K[X] be two polynomials with coefficients in a field K such that B 6= 0.
Then there exists a unique pair (Q,R) of K[X] such that A = BQ + R and
deg(R) < deg(B).

Example 4.3.

Let A = x3 + x+ 1 and B = x+ 1. Then we have A = B(x2 − x+ 2)− 1.

Recall that a subset I of a ring A is an ideal if the following two conditions hold :

1. (I,+) is a subgroup of (A,+),

2. For every a ∈ A, aI ⊂ I. In other words, for all a ∈ A and x ∈ I, ax ∈ I.

Théorème 4.15.

The ring K[X] is principal.
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Proof 4.16.

Proof. Let I be an ideal of K[X] containing a nonzero polynomial. We want to
show that I is principal, i.e., there exists a polynomial P such that I is exactly
the set of multiples of P . Let D = {deg(S) | S ∈ I, S 6= 0}. This is a non-empty
subset of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since
I is an ideal, all multiples of P are in I. Conversely, we want to show that every
element of I is a multiple of P . So let A ∈ I. We know there exist Q,R such that
A = PQ + R with deg(R) < n. Since −PQ ∈ I, we have R = A − PQ ∈ I. As
deg(R) < n, by the definition of n, we have R = 0, i.e., A = PQ, and A is indeed
a multiple of P .

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in A[X] are the constant polynomials P =

a ∈ U(A). Thus, since all non-zero elements in a field are invertible, the invertible
polynomials in K[X] are the non-zero constant polynomials.

Definition 4.17.

A polynomial P ∈ K[X] is called irreducible if it is not invertible and if the equality
P = QR implies that either Q or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.4.

1. The polynomial P (X) = 3 is invertible in Q[X], so it is not irreducible.

2. The polynomial P (X) = X2 +1 is irreducible if we consider it as an element
of R[X], but it is reducible if we consider it as an element of C[X], because
X2 + 1 = (X − i)(X + i).

The notion of irreducible polynomials depends on the field K.

Proposition 4.18.

1. Reducible polynomials in K[X] have degree greater than or equal to 2.

2. All polynomials of degree 1 are irreducible.

Proof 4.19.

See textbook.
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4.2.5 Greatest Common Divisor

Let P1, ..., Pn ∈ K[X]. Since K[X] is principal, the ideal

< P1, ..., Pn >= {P1A1, ..., PnAn/A1, ..., An ∈ K[X]}

is generated by a unique unit polynomial P . This polynomial is called the gcd of
Pi and is denoted

P = gcd(P1, ..., Pn).

Proposition 4.20. Properties of gcd

Let P,Q ∈ K[X]. Then

1. gcd(P,Q) is a common divisor of P and Q.

2. If D is another common divisor of P and Q, then D divides gcd(P,Q).

3. There exist polynomials (U, V ) ∈ K[X]2 such that

PU +QV = gcd(P,Q).

Definition 4.21.

Let P,Q ∈ K[X]. We say that P and Q are coprime if gcd(P,Q) = 1.

In other words, if gcd(P,Q) = 1, then only non-zero constants divide both P and
Q.

4.2.6 Factorization

Théorème 4.22.

Let P ∈ K[X] be a non-zero polynomial. Then P decomposes uniquely up to the
order of factors as :

P = αPα1
1 Pα2

2 ...Pαn
n

where Pi are distinct, unit, irreducible polynomials in K[X] and α ∈ K∗ is the
leading coefficient of P .

Example 4.5.

Consider the polynomial P = x2 + 1. Then P exists in both R[X] and C[X].
However, care must be taken as its factorization differs in these two rings :

1. P factors as (X − i) · (X + i) in C[X].

2. P is irreducible in R[X].
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Proposition 4.23.

Let P and Q be two non-zero polynomials. Let P = aPα1
1 Pα2

2 ...Pαn
n and Q =

bP β1
1 P β2

2 ...P βn
n be their decompositions into irreducible factors where αi, βi ≥ 0 for

all i ∈ {1, ..., n}. Then
P

Q
⇔ αj ≤ βj

for all 1 ≤ j ≤ n.

4.3 Polynomial Functions

Let P ∈ K[X]. We denote by fP the polynomial function associated with P ,
defined as :

fP : K −→ K
x 7→ P (x).

Definition 4.24.

Let P ∈ K[X]. We say that x ∈ K is a root of P if fP (x) = 0 (or P (x) = 0).

Proposition 4.25.

Let P ∈ K[X] and α ∈ K. Then α is a root of P if and only if the polynomial
(x− α)/P .

Definition 4.26.

Let P ∈ K[X] and let α be a root of P . We say that α has multiplicity k if and
only if (x− α)k divides P and (x− α)k+1 does not divide P .

In other words, α is a root of P of multiplicity k if and only if
P = (x− α)kQ and Q(α) 6= 0.

Example 4.6.

To determine the multiplicity of a root, we can perform successive Euclidean di-
visions. Let P = x3 − 3x2 + 4. It can be verified easily that 2 is a root of P .
Furthermore, we find P (x) = (x− 2)2Q(x) with Q(x) = x+ 1 and Q(2) 6= 0.

Théorème 4.27.

Let P ∈ K[X] and α1, ..., αr be pairwise distinct roots of multiplicative k1, ..., kr,
respectively. Then, there exists Q ∈ K[X] such that

P = (x− α1)
k1(x− α2)

k2 ...(x− αr)krQ

and Q(αi) 6= 0 for all i. In particular, P has a degree of at least k1 + ...+ kr.
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4.4 Exercises

Exercice 4.28.

Find the polynomial P of degree less than or equal to 3 such that : P (0) = 1,
P (1) = 0, P (−1) = −2, and P (2) = 4.

Exercice 4.29.

Perform the Euclidean division of A by B for the following cases :

1. A = 3X5 + 4X2 + 1 and B = X2 + 2X + 3.

2. A = 3X5 + 2X4 −X2 + 1 and B = X3 +X + 2.

3. A = X4 −X3 +X − 2 and B = X2 − 2X + 4.

Exercice 4.30.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|R then P |R.

2. If P |Q and P |R then P |Q+R.

3. If P |Q and Q 6= 0 then deg(P ) ≤ deg(Q).

4. If P |Q and R|S then PR|QS.

5. If P |Q then P n|Qn for all n ≥ 1.

Exercice 4.31.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|P then P and Q are associated.

2. If P is associated to R and Q is associated to S then P |Q⇔ R|S.

Exercice 4.32.

Find the gcd of the following polynomials :

1. X3 −X2 −X − 2 and X5 − 2X4 +X2 −X − 2.

2. X4 +X3 − 2X + 1 and X3 +X + 1.

Exercice 4.33.

1. Reducible polynomials in K[X] have degree greater than or equal to 2.

2. All polynomials of degree 1 are irreducible.
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