Chapitre 4

Rings of Polynomials

Introduction

In this chapter, we introduce the concept of polynomials over a field or a commu-
tative unitary ring. Throughout the chapter, K denotes a field and A denotes a

commutative unitary ring.

4.1 Definitions

Definition 4.1.
Let (A, +, ) be a commutative unitary ring. A polynomial P in one indeterminate

X with coefficients in A is any algebraic expression of the form :
P=ay+u X +aX>+...+a,X"+...

where the coefficients a; € A are zero for all but finitely many .

Another definition is given by :

Definition 4.2.
A polynomial in one indeterminate x with coefficients in A is any sequence P =

(@pn)nen of elements from A, all zero from some point onwards.

1. The a,, are called the coefficients of P.
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2. The highest index n such that a, # 0 (if it exists) is called the degree of P,
denoted deg(P). In this case, a, X" is called the leading term of P.

3. If all coefficients a; are zero, P is called the zero polynomial, denoted 0, and

conventionally deg(0) = —oc.
4. If the leading term of P is 1X", then P is called monic.
5. Every element a € A is a polynomial, called a constant polynomial.

6. The set of polynomials in one indeterminate X with coefficients in A is

denoted A[X].

Polynomials are equipped with the usual operations of addition, polynomial mul-
tiplication, and scalar multiplication by A € A : Let P = (ay)nen, @ = (by)nen be

two polynomials in one indeterminate with coefficients in A. Then :

1. P + Q — (a/n + bn)nGN
2. PQ = (¢p)nen where ¢, = Zogkgn apby—_p

3. AP = (Aap)nen

Definition 4.3.
The set A[X], consisting of polynomials in one indeterminate with coefficients in A,
equipped with the addition and multiplication defined above, forms a commutative

ring.

Proposition 4.4.
If A is an integral domain, then for all P,Q € A[X], we have :

1. deg(PQ) = deg(P) + deg(Q)
2. deg(P + Q) < max(deg(P), deg(Q))

Proof 4.5.

1. If one of the polynomials is zero, then PQ = 0 and deg(PQ) = —oo which is
true. Assume both P and Q) are non-zero. Let n = deg(P) and m = deg(Q).
Write P = > a; X" and Q = > b; X" with a;,b; € A. Then the coefficient
of the leading term in PQ is a,b,,. Since a, # 0 and b,, # 0, and A is an
integral domain, we have a,b,, # 0, implying deg(PQ) = n + m.

2. Trivial.

Let U(A) denote the units (invertible elements) of A.
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Proposition 4.6.
If A is an integral domain, then the units of A[X]| are exactly the constant poly-
nomials P = a where a € U(A).

Proof 4.7.
Let P be invertible in A[X]. There exists Q € A[X]| such that PQ = 1. Thus,
deg(P) +deg(Q) = 0 implies deg(P) = deg(Q) = 0. Hence, P and @) are constant

tnvertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.8.
Two polynomials P and @) in A[X] are said to be associated if there exists a € U(A)
such that P = a(Q).

Example 4.1.
The set of polynomials associated with X? + 1 in Z[X] is

(X?+1,-(X?+1)}

since the only units in Z are 1 and —1.

Proposition 4.9.

1. The relation "being associated" is an equivalence relation on A[X].
2. If P and Q) are associated and have the same leading coefficient, then P = Q).

3. If A 1s a field, then every polynomial P is associated with a unique unitary

polynomial.

4.2.2 Division

Definition 4.10.
Let P, € A[X]. We say that P divides @, denoted as P|Q, if there exists R €
A[X] such that Q = PR.
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Example 4.2.

1. The polynomial X — 1 divides X? — 1 in Z[X].
2. The polynomial X — 3 does not divide X* — 1 in Z|X].
Proposition 4.11.
Let P,Q, R, S € A[X].
. If P|Q and Q|R, then P|R.
2. If P|Q and P|R, then P|(Q + R).
3. If P|Q and Q # 0, then deg(P) < deg(Q).
4. If P|Q and R|S, then PR|QS.
5. If P|Q, then P"|Q™ for alln > 1.

~

Proof 4.12.
See textbook.

Proposition 4.13.
Let P,Q, R, S € A[X].
1. If P|Q and Q|P, then P and Q are associated.
2. If P is associated with R and Q is associated with S, then P|Q) <= R|S.

4.2.3 FEuclidean Division

Théoréme 4.14. (Euclidean Division)

Let A, B € K[X] be two polynomials with coefficients in a field K such that B # 0.
Then there exists a unique pair (Q, R) of K[X] such that A = BQ + R and
deg(R) < deg(B).

Example 4.3.
Let A=2*+ 2+ 1 and B=x+ 1. Then we have A = B(z* —x +2) — 1.

Recall that a subset I of a ring A is an ideal if the following two conditions hold :
1. (I,+) is a subgroup of (A, +),
2. For every a € A, al C I. In other words, foralla € Aand z € I, ax € I.

Théoréme 4.15.
The ring K[X] is principal.
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Proof 4.16.

Proof. Let I be an ideal of K[X] containing a nonzero polynomial. We want to
show that I s principal, 1.e., there exists a polynomial P such that I is exactly
the set of multiples of P. Let D = {deg(S) | S € I,S # 0}. This is a non-empty
subset of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since
I is an ideal, all multiples of P are in I. Conversely, we want to show that every
element of I is a multiple of P. So let A € I. We know there exist QQ, R such that
A = PQ + R with deg(R) < n. Since —PQ € I, we have R = A — PQ € I. As
deg(R) < n, by the definition of n, we have R =0, i.e., A = PQ, and A is indeed
a multiple of P.

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in A[X] are the constant polynomials P =
a € U(A). Thus, since all non-zero elements in a field are invertible, the invertible

polynomials in K[X] are the non-zero constant polynomials.

Definition 4.17.
A polynomial P € K[X] is called irreducible if it is not invertible and if the equality
P = QR implies that either ) or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.4.

1. The polynomial P(X) = 3 is invertible in Q[X], so it is not irreducible.

2. The polynomial P(X) = X?+1 is irreducible if we consider it as an element
of RIX], but it is reducible if we consider it as an element of C[X], because
X?24+1=(X —4)(X +1).

The notion of irreducible polynomials depends on the field K.

Proposition 4.18.

1. Reducible polynomials in K[X| have degree greater than or equal to 2.
2. All polynomials of degree 1 are irreducible.

Proof 4.19.
See textbook.
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4.2.5 Greatest Common Divisor
Let P, ..., P, € K[X]. Since K[X] is principal, the ideal
< Pla ceey Pn >= {PlAla ceey PnAn/Ala ceey An € K[X]}

is generated by a unique unit polynomial P. This polynomial is called the ged of
P, and is denoted
P =gcd(Py, ..., P).

Proposition 4.20. Properties of ged

Let P,Q € K[X]. Then
1. ged(P, Q) is a common divisor of P and Q.
2. If D is another common divisor of P and Q, then D divides ged(P, Q).
3. There exist polynomials (U, V) € K[X]? such that

PU + QV = ged(P, Q).

Definition 4.21.
Let P,@Q € K[X]. We say that P and () are coprime if ged(P, Q) = 1.

In other words, if ged(P, Q) = 1, then only non-zero constants divide both P and
Q.

4.2.6 Factorization

Théoréme 4.22.
Let P € K[X] be a non-zero polynomial. Then P decomposes uniquely up to the

order of factors as :
P =aP" P2 P

where P; are distinct, unit, irreducible polynomials in K[X] and a € K* is the
leading coefficient of P.

Example 4.5.
Consider the polynomial P = x? + 1. Then P exists in both R[X] and C[X].

However, care must be taken as its factorization differs in these two rings :
1. P factors as (X —1i) - (X +1) in C[X].
2. P is irreducible in R[X].
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Proposition 4.23.

Let P and @ be two non-zero polynomials. Let P = aP" Py?.. .Pi and ) =
bPiBlez’...Pf" be their decompositions into irreducible factors where oy, B; > 0 for
alli € {1,...,n}. Then

P
—@&jgﬂj

Q

foralll < j<n.

4.3 Polynomial Functions

Let P € K[X]. We denote by fp the polynomial function associated with P,

defined as :
fp K— K

x — P(x).
Definition 4.24.
Let P € K[X]. We say that x € K is a root of P if fp(z) =0 (or P(z) = 0).

Proposition 4.25.
Let P € K[X] and o € K. Then « is a root of P if and only if the polynomial
(x —a)/P.

Definition 4.26.
Let P € K[X] and let a be a root of P. We say that « has multiplicity & if and

only if (x — a)* divides P and (z — «)**! does not divide P.

In other words, « is a root of P of multiplicity & if and only if
P=(z—a)fQ and Q(a) # 0.

Example 4.6.

To determine the multiplicity of a root, we can perform successive Fuclidean di-
visions. Let P = 23 — 3x® + 4. It can be verified easily that 2 is a root of P.
Furthermore, we find P(z) = (x — 2)?Q(z) with Q(x) = x + 1 and Q(2) # 0.

Théoréme 4.27.
Let P € K[X] and ay, ..., a, be pairwise distinct roots of multiplicative ky, ..., k,,
respectively. Then, there ezists Q) € K[X]| such that

P=(z—a)@—a)?. (r-a)Q

and Q(c;) # 0 for all i. In particular, P has a degree of at least ki + ... + k..
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4.4 Exercises

Exercice 4.28.
Find the polynomial P of degree less than or equal to 3 such that : P(0)
P(1) =0, P(—1) = =2, and P(2) = 4.

Exercice 4.29.

Perform the Fuclidean division of A by B for the following cases :
1. A=3X°+4X?+1 and B= X?+2X + 3.
2. A=3X"+2X'—X?+1and B=X>+X +2.
3. A=X*"— X34+ X -2 and B=X?-2X +4.

Exercice 4.30.

Let P,Q, R, S € A[X].

. If P|Q and Q|R then P|R.

. If P|Q and P|R then P|Q + R.

. If P|Q and Q # 0 then deg(P) < deg(Q).

. If P|Q and R|S then PR|QS.

. If P|Q then P™|Q™ for alln > 1.

~

G N L

Exercice 4.31.

Let P,Q, R, S € A[X].

1. If P|Q and Q|P then P and Q are associated.

2. If P is associated to R and Q is associated to S then P|Q < R|S.
Exercice 4.32.
Find the gcd of the following polynomials :

1. X3 —-X?-X-2and X°-2X*+X?2 - X - 2.

2. X'+ X?—2X 41 and X* + X +1.

Exercice 4.33.

1. Reducible polynomials in K[X| have degree greater than or equal to 2.

2. All polynomials of degree 1 are irreducible.
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