Chapitre 4

Rings of Polynomials

Introduction

In this chapter, we introduce the concept of polynomials over a field or a commutative unitary ring. Throughout the chapter, \mathbb{K} denotes a field and \mathbb{A} denotes a commutative unitary ring.

4.1 Definitions

Definition 4.1.

Let $(\mathbb{A}, +, \cdot)$ be a commutative unitary ring. A polynomial P in one indeterminate X with coefficients in \mathbb{A} is any algebraic expression of the form :

$$P = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n + \ldots$$

where the coefficients $a_i \in \mathbb{A}$ are zero for all but finitely many *i*.

Another definition is given by :

Definition 4.2.

A polynomial in one indeterminate x with coefficients in \mathbb{A} is any sequence $P = (a_n)_{n \in \mathbb{N}}$ of elements from \mathbb{A} , all zero from some point onwards.

1. The a_n are called the coefficients of P.

- 2. The highest index n such that $a_n \neq 0$ (if it exists) is called the degree of P, denoted deg(P). In this case, $a_n X^n$ is called the leading term of P.
- 3. If all coefficients a_i are zero, P is called the zero polynomial, denoted 0, and conventionally $\deg(0) = -\infty$.
- 4. If the leading term of P is $1X^n$, then P is called monic.
- 5. Every element $a \in \mathbb{A}$ is a polynomial, called a constant polynomial.
- 6. The set of polynomials in one indeterminate X with coefficients in A is denoted $\mathbb{A}[X]$.

Polynomials are equipped with the usual operations of addition, polynomial multiplication, and scalar multiplication by $\lambda \in \mathbb{A}$: Let $P = (a_n)_{n \in \mathbb{N}}, Q = (b_n)_{n \in \mathbb{N}}$ be two polynomials in one indeterminate with coefficients in \mathbb{A} . Then :

- 1. $P + Q = (a_n + b_n)_{n \in \mathbb{N}}$
- 2. $PQ = (c_n)_{n \in \mathbb{N}}$ where $c_n = \sum_{0 \le k \le n} a_k b_{n-k}$
- 3. $\lambda P = (\lambda a_n)_{n \in \mathbb{N}}$

Definition 4.3.

The set $\mathbb{A}[X]$, consisting of polynomials in one indeterminate with coefficients in \mathbb{A} , equipped with the addition and multiplication defined above, forms a commutative ring.

Proposition 4.4.

If \mathbb{A} is an integral domain, then for all $P, Q \in \mathbb{A}[X]$, we have :

- 1. $\deg(PQ) = \deg(P) + \deg(Q)$
- 2. $\deg(P+Q) \le \max(\deg(P), \deg(Q))$

Proof 4.5.

- If one of the polynomials is zero, then PQ = 0 and deg(PQ) = -∞ which is true. Assume both P and Q are non-zero. Let n = deg(P) and m = deg(Q). Write P = ∑a_iXⁱ and Q = ∑b_iXⁱ with a_i, b_i ∈ A. Then the coefficient of the leading term in PQ is a_nb_m. Since a_n ≠ 0 and b_m ≠ 0, and A is an integral domain, we have a_nb_m ≠ 0, implying deg(PQ) = n + m.
- 2. Trivial.

Let $\mathbb{U}(\mathbb{A})$ denote the units (invertible elements) of \mathbb{A} .

Proposition 4.6.

If \mathbb{A} is an integral domain, then the units of $\mathbb{A}[X]$ are exactly the constant polynomials P = a where $a \in \mathbb{U}(\mathbb{A})$.

Proof 4.7.

Let P be invertible in $\mathbb{A}[X]$. There exists $Q \in \mathbb{A}[X]$ such that PQ = 1. Thus, $\deg(P) + \deg(Q) = 0$ implies $\deg(P) = \deg(Q) = 0$. Hence, P and Q are constant invertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.8.

Two polynomials P and Q in $\mathbb{A}[X]$ are said to be associated if there exists $a \in \mathbb{U}(A)$ such that P = aQ.

Example 4.1.

The set of polynomials associated with $X^2 + 1$ in $\mathbb{Z}[X]$ is

$${X^2 + 1, -(X^2 + 1)}$$

since the only units in \mathbb{Z} are 1 and -1.

Proposition 4.9.

- 1. The relation "being associated" is an equivalence relation on $\mathbb{A}[X]$.
- 2. If P and Q are associated and have the same leading coefficient, then P = Q.
- 3. If A is a field, then every polynomial P is associated with a unique unitary polynomial.

4.2.2 Division

Definition 4.10.

Let $P, Q \in \mathbb{A}[X]$. We say that P divides Q, denoted as P|Q, if there exists $R \in \mathbb{A}[X]$ such that Q = PR.

Example 4.2.

- 1. The polynomial X 1 divides $X^2 1$ in $\mathbb{Z}[X]$.
- 2. The polynomial X 3 does not divide $X^2 1$ in $\mathbb{Z}[X]$.

Proposition 4.11.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|R, then P|R.
- 2. If P|Q and P|R, then P|(Q+R).
- 3. If P|Q and $Q \neq 0$, then $\deg(P) \leq \deg(Q)$.
- 4. If P|Q and R|S, then PR|QS.
- 5. If P|Q, then $P^n|Q^n$ for all $n \ge 1$.

Proof 4.12.

See textbook.

Proposition 4.13.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|P, then P and Q are associated.
- 2. If P is associated with R and Q is associated with S, then $P|Q \iff R|S$.

4.2.3 Euclidean Division

Théorème 4.14. (Euclidean Division)

Let $A, B \in K[X]$ be two polynomials with coefficients in a field K such that $B \neq 0$. Then there exists a unique pair (Q, R) of K[X] such that A = BQ + R and $\deg(R) < \deg(B)$.

Example 4.3.

Let $A = x^3 + x + 1$ and B = x + 1. Then we have $A = B(x^2 - x + 2) - 1$.

Recall that a subset I of a ring \mathbb{A} is an ideal if the following two conditions hold :

- 1. (I, +) is a subgroup of (A, +),
- 2. For every $a \in A$, $aI \subset I$. In other words, for all $a \in A$ and $x \in I$, $ax \in I$.

Théorème 4.15.

The ring $\mathbb{K}[X]$ is principal.

Proof 4.16.

Proof. Let I be an ideal of $\mathbb{K}[X]$ containing a nonzero polynomial. We want to show that I is principal, i.e., there exists a polynomial P such that I is exactly the set of multiples of P. Let $D = \{\deg(S) \mid S \in I, S \neq 0\}$. This is a non-empty subset of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since I is an ideal, all multiples of P are in I. Conversely, we want to show that every element of I is a multiple of P. So let $A \in I$. We know there exist Q, R such that A = PQ + R with $\deg(R) < n$. Since $-PQ \in I$, we have $R = A - PQ \in I$. As $\deg(R) < n$, by the definition of n, we have R = 0, i.e., A = PQ, and A is indeed a multiple of P.

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in $\mathbb{A}[X]$ are the constant polynomials $P = a \in \mathbb{U}(A)$. Thus, since all non-zero elements in a field are invertible, the invertible polynomials in $\mathbb{K}[X]$ are the non-zero constant polynomials.

Definition 4.17.

A polynomial $P \in \mathbb{K}[X]$ is called irreducible if it is not invertible and if the equality P = QR implies that either Q or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.4.

- 1. The polynomial P(X) = 3 is invertible in $\mathbb{Q}[X]$, so it is not irreducible.
- 2. The polynomial $P(X) = X^2 + 1$ is irreducible if we consider it as an element of $\mathbb{R}[X]$, but it is reducible if we consider it as an element of $\mathbb{C}[X]$, because $X^2 + 1 = (X - i)(X + i).$

The notion of irreducible polynomials depends on the field \mathbb{K} .

Proposition 4.18.

- 1. Reducible polynomials in $\mathbb{K}[X]$ have degree greater than or equal to 2.
- 2. All polynomials of degree 1 are irreducible.

Proof 4.19.

See textbook.

4.2.5 Greatest Common Divisor

Let $P_1, ..., P_n \in \mathbb{K}[X]$. Since $\mathbb{K}[X]$ is principal, the ideal

$$\langle P_1, ..., P_n \rangle = \{P_1A_1, ..., P_nA_n/A_1, ..., A_n \in \mathbb{K}[X]\}$$

is generated by a unique unit polynomial P. This polynomial is called the gcd of P_i and is denoted

$$P = \gcd(P_1, \dots, P_n).$$

Proposition 4.20. Properties of gcd

Let $P, Q \in \mathbb{K}[X]$. Then

- 1. gcd(P,Q) is a common divisor of P and Q.
- 2. If D is another common divisor of P and Q, then D divides gcd(P,Q).
- 3. There exist polynomials $(U, V) \in \mathbb{K}[X]^2$ such that

$$PU + QV = \gcd(P, Q).$$

Definition 4.21.

Let $P, Q \in \mathbb{K}[X]$. We say that P and Q are coprime if gcd(P, Q) = 1.

In other words, if gcd(P,Q) = 1, then only non-zero constants divide both P and Q.

4.2.6 Factorization

Théorème 4.22.

Let $P \in \mathbb{K}[X]$ be a non-zero polynomial. Then P decomposes uniquely up to the order of factors as :

$$P = \alpha P_1^{\alpha_1} P_2^{\alpha_2} \dots P_n^{\alpha_n}$$

where P_i are distinct, unit, irreducible polynomials in $\mathbb{K}[X]$ and $\alpha \in \mathbb{K}^*$ is the leading coefficient of P.

Example 4.5.

Consider the polynomial $P = x^2 + 1$. Then P exists in both $\mathbb{R}[X]$ and $\mathbb{C}[X]$. However, care must be taken as its factorization differs in these two rings :

- 1. P factors as $(X i) \cdot (X + i)$ in $\mathbb{C}[X]$.
- 2. P is irreducible in $\mathbb{R}[X]$.

Proposition 4.23.

Let P and Q be two non-zero polynomials. Let $P = aP_1^{\alpha_1}P_2^{\alpha_2}...P_n^{\alpha_n}$ and $Q = bP_1^{\beta_1}P_2^{\beta_2}...P_n^{\beta_n}$ be their decompositions into irreducible factors where $\alpha_i, \beta_i \geq 0$ for all $i \in \{1, ..., n\}$. Then

$$\frac{P}{Q} \Leftrightarrow \alpha_j \le \beta_j$$

for all $1 \leq j \leq n$.

4.3 Polynomial Functions

Let $P \in \mathbb{K}[X]$. We denote by f_P the polynomial function associated with P, defined as :

$$f_P: \mathbb{K} \longrightarrow \mathbb{K}$$
$$x \mapsto P(x).$$

Definition 4.24.

Let $P \in \mathbb{K}[X]$. We say that $x \in \mathbb{K}$ is a root of P if $f_P(x) = 0$ (or P(x) = 0).

Proposition 4.25.

Let $P \in \mathbb{K}[X]$ and $\alpha \in \mathbb{K}$. Then α is a root of P if and only if the polynomial $(x - \alpha)/P$.

Definition 4.26.

Let $P \in \mathbb{K}[X]$ and let α be a root of P. We say that α has multiplicity k if and only if $(x - \alpha)^k$ divides P and $(x - \alpha)^{k+1}$ does not divide P.

In other words, α is a root of P of multiplicity k if and only if $P = (x - \alpha)^k Q$ and $Q(\alpha) \neq 0$.

Example 4.6.

To determine the multiplicity of a root, we can perform successive Euclidean divisions. Let $P = x^3 - 3x^2 + 4$. It can be verified easily that 2 is a root of P. Furthermore, we find $P(x) = (x-2)^2 Q(x)$ with Q(x) = x + 1 and $Q(2) \neq 0$.

Théorème 4.27.

Let $P \in \mathbb{K}[X]$ and $\alpha_1, ..., \alpha_r$ be pairwise distinct roots of multiplicative $k_1, ..., k_r$, respectively. Then, there exists $Q \in \mathbb{K}[X]$ such that

$$P = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} \dots (x - \alpha_r)^{k_r} Q$$

and $Q(\alpha_i) \neq 0$ for all *i*. In particular, *P* has a degree of at least $k_1 + \ldots + k_r$.

4.4 Exercises

Exercice 4.28.

Find the polynomial P of degree less than or equal to 3 such that : P(0) = 1, P(1) = 0, P(-1) = -2, and P(2) = 4.

Exercice 4.29.

Perform the Euclidean division of A by B for the following cases :

- 1. $A = 3X^5 + 4X^2 + 1$ and $B = X^2 + 2X + 3$.
- 2. $A = 3X^5 + 2X^4 X^2 + 1$ and $B = X^3 + X + 2$.
- 3. $A = X^4 X^3 + X 2$ and $B = X^2 2X + 4$.

Exercice 4.30.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|R then P|R.
- 2. If P|Q and P|R then P|Q+R.
- 3. If P|Q and $Q \neq 0$ then $\deg(P) \leq \deg(Q)$.
- 4. If P|Q and R|S then PR|QS.
- 5. If P|Q then $P^n|Q^n$ for all $n \ge 1$.

Exercice 4.31.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|P then P and Q are associated.
- 2. If P is associated to R and Q is associated to S then $P|Q \Leftrightarrow R|S$.

Exercice 4.32.

Find the gcd of the following polynomials :

- 1. $X^3 X^2 X 2$ and $X^5 2X^4 + X^2 X 2$.
- 2. $X^4 + X^3 2X + 1$ and $X^3 + X + 1$.

Exercice 4.33.

- 1. Reducible polynomials in $\mathbb{K}[X]$ have degree greater than or equal to 2.
- 2. All polynomials of degree 1 are irreducible.