University Center Abdelhafid Boussouf Mila Institute of Mathematics and Computer Science 1st Year Mathematics (Algebra 1)

Series of Tutorial No. 4 Rings of Polynomials

Exercise 1.

Find the polynomial P of degree less than or equal to 3 such that: P(0) = 1, P(1) = 0, P(-1) = -2, and P(2) = 4.

Exercise 2.

Perform the Euclidean division of A by B for the following cases:

- 1. $A = 3X^5 + 4X^2 + 1$ and $B = X^2 + 2X + 3$. 2. $A = 3X^5 + 2X^4 - X^2 + 1$ and $B = X^3 + X + 2$.
- 3. $A = X^4 X^3 + X 2$ and $B = X^2 2X + 4$.

Exercise 3.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|R then P|R.
- 2. If P|Q and P|R then P|Q+R.
- 3. If P|Q and $Q \neq 0$ then $\deg(P) \leq \deg(Q)$.
- 4. If P|Q and R|S then PR|QS.
- 5. If P|Q then $P^n|Q^n$ for all $n \ge 1$.

Exercise 4.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|P then P and Q are associated.
- 2. If P is associated to R and Q is associated to S then $P|Q \Leftrightarrow R|S$.

Exercise 5.

Find the gcd of the following polynomials:

- 1. $X^3 X^2 X 2$ and $X^5 2X^4 + X^2 X 2$.
- 2. $X^4 + X^3 2X + 1$ and $X^3 + X + 1$.

Exercise 6.

- 1. Reducible polynomials in $\mathbb{K}[X]$ have degree greater than or equal to 2.
- 2. All polynomials of degree 1 are irreducible.