Chapitre 3

Algebraic Structures

3.1 Law of internal composition

Definition 3.1.

Let E be a non-empty set.

- 1. A law of internal composition on E is a function from $E \times E$ to E. If T denotes this function, then the image of the pair $(x, y) \in E \times E$ under T is denoted as xTy.
- 2. An structured set is any pair (E, T) where E is a non-empty set and T is a law of internal composition on E.

Example 3.1.

The most common internal composition laws are :

- 1. + in $\mathbb{N}, \mathbb{N}^*, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, but not in $\mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$
- 2. $-in \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- 3. \times in $\mathbb{N}, \mathbb{N}^*, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- 4. / in $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$
- 5. 0 (composition of functions) in the set of functions from E to E
- 6. The law \oplus defined on \mathbb{R}^2 by $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- 7. The law T defined on \mathbb{R} by xTy = x + y xy
- 8. The laws \cup , \cap (union, intersection) defined on P(E) (power set of a set E)

Definition 3.2. (Properties of laws)

Let (E,T) be a structured set.

- 1. The law T is called **associative** on E if (xTy)Tz = xT(yTz) for all x, y, z in E.
- 2. The law T is called **commutative** on E if xTy = yTx for all x, y in E.

Example 3.2.

Addition and multiplication are associative and commutative on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Definition 3.3. (Properties of laws)

Let (E,T) be a structured set.

1. An element e of E is called **neutral** for the law T if,

$$\forall x \in E, \ xTe = eTx = x.$$

2. If (E,T) has a neutral element e, then an element x of E is said to be invertible (or symmetrizable) for the law T if there exists an element x' in E such that :

$$xTx' = x'Tx = e$$

The element x' is then called the symmetric element of x for the law T.

Proposition 3.4.

Let (E,T) be a structured set. If the neutral element of E for the law T exists, then it is unique.

Démonstration. Suppose there exist two neutral elements e and e'. Then,

$$e' = eTe' = e$$

which implies e = e'.

Proposition 3.5.

Let (E,T) be a structured set where the law T is associative and has a neutral element.

- 1. If $x \in E$ is symmetrizable, then its symmetric element is unique.
- 2. If $x \in E$ and $y \in E$ are symmetrizable, then xTy is symmetrizable and its symmetric element (xTy)' is given by (xTy)' = y'Tx' where x' denotes the symmetric element of x and y' denotes the symmetric element of y.

Démonstration.

1. Let's suppose an element x has two symmetric elements x' and x''. Then,

$$xTx' = e \Rightarrow x''T(xTx') = x'' \Rightarrow (x''Tx)Tx' = x'' \Rightarrow x' = x''.$$

2. We have

$$(y'Tx')T(xTy) = y'T(x'Tx)Ty = y'Ty = e.$$

Also,

$$(xTy)T(y'Tx') = xT(yTy')Tx' = xTx' = e.$$

Thus, (xTy)' = y'Tx'.

3.2 Groups

3.2.1 Group Structure

Definition 3.6.

Let (G, T) be a structured set.

- 1. We say that (G, T) is a **group** if
 - (a) the operation T is associative on G,
 - (b) there exists a neutral element for the operation T in G,
 - (c) every element of G is symmetrizable for the operation T.

We also say that the set G has a **group structure** for the operation T.

2. We say that the group (G, T) is commutative (or abelian) if the operation T is commutative on G.

Example 3.3.

First, examples of groups are provided :

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} equipped with addition.
- 2. \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* equipped with multiplication.

Example 3.4.

For various reasons (to be determined), the following pairs are not groups :

- 1. $(\mathbb{N}, +), (\mathbb{R}, \times).$
- 2. $(\mathcal{P}(E), \cup), (\mathcal{P}(E), \cap).$

3.2.2 Subgroups

Definition 3.7. (Subgroups)

A subgroup of a group (G, *) is a non-empty subset H of G such that :

- 1. * induces an internal composition law on H.
- 2. With this law, H forms a group. We denote this as H < G.

Proposition 3.8.

The subset $H \subset G$ is a **subgroup** of a group (G, *) if and only if

- 1. $H \neq \emptyset$,
- 2. $\forall (x,y) \in H^2, x * y \in H$,
- 3. $\forall x \in H, x^{-1} \in H$.

Example 3.5.

- 1. Let (G, *) be a group. Then G and $\{e_G\}$ are subgroups of G.
- 2. $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.

Proposition 3.9.

The subset $H \subset G$ is a subgroup of a group (G, *) if and only if

- 1. $H \neq \emptyset$,
- 2. $\forall (x, y) \in H^2, \ x * y^{-1} \in H.$

Proposition 3.10.

The intersection of any family of subgroups of a group (G, *) is a subgroup of (G, *).

Démonstration.

Let $(H_i)_{i \in I}$ be a family of subgroups of a group G. Define $K = \bigcap_{i \in I} H_i$, the intersection of all H_i . The set K is non-empty since it contains the identity element e, which belongs to each subgroup H_i . Let x and y be two elements of K. For every $i \in I$, we have $x * y^{-1} \in H_i$ because H_i is a subgroup. Therefore, $x * y^{-1} \in K$. This proves that K is a subgroup of G.

Remarque 3.11.

The arbitrary union of subgroups of a group (G, *) is not necessarily a subgroup of (G, *).

Example 3.6.

Let T be the internal composition law defined on \mathbb{R}^2 by

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ (x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$$

We have (\mathbb{R}^2, T) is a group, $\mathbb{R} \times \{0\}$ and $\{0\} \times \mathbb{R}$ are two subgroups of (\mathbb{R}^2, T) but $\mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}$ does not form a subgroup of (\mathbb{R}^2, T) .

Proposition 3.12.

The union of two subgroups H and K of the same group (G, *) is a subgroup $(H \cup K < G)$ if and only if $H \subset K$ or $K \subset H$.

Démonstration.

Suppose $H \cup K$ is a subgroup of G and H is not included in K, meaning there exists $h \in H$ such that $h \notin K$. Let's show that $K \subset H$. Take any $k \in K$. We have $h * k \in H \cap K$. However, $h * k \notin K$ because otherwise $h = (h * k) * k' \in K$. Hence, $h * k \in H$, implying $k = h' * (h * k) \in H$.

3.2.3 Examples of Groups

3.2.3.1 The Group $\mathbb{Z}/n\mathbb{Z}$

It is initially clear that if n is a positive integer (which we can assume to be positive and non-zero), the set $n\mathbb{Z}$ consisting of integers of the form nk, where k ranges over \mathbb{Z} (the set of multiples of n), is an additive subgroup of $(\mathbb{Z}, +)$.

Proposition 3.13.

Every subgroup of $(\mathbb{Z}, +)$ is of the form $n\mathbb{Z}$.

Démonstration. Let S be a subgroup of \mathbb{Z} other than $\{0\}$ and \mathbb{Z} . Hence, S does not contain 1. The set of positive integers in S, denoted by S^+ , has a smallest element n which is at least 2 (since S is countable and bounded below). Every integer of the form kn, where k is a natural number, belongs to S (clear from induction since $kn = n + n + \ldots + n$). Therefore, S contains $n\mathbb{Z}$.

By Euclidean division, every positive integer in S^+ that is not of the form kn can be written as a = kn + r, where 0 < r < n. It follows that r = a - kn > 0. Since both a and kn are in S^+ , r must also be in S^+ . This contradicts n being the smallest element of S^+ , hence r = 0. This shows that $S = n\mathbb{Z}$. We easily show that the congruence relation modulo n, where $n \in \mathbb{N}$, due to Gauss, denoted by \equiv , is defined as :

$$\forall x, y \in \mathbb{Z}, \quad x \equiv y[n] \Leftrightarrow (x - y) \in n\mathbb{Z} \Leftrightarrow \exists k \in \mathbb{Z}, \quad y = x - nk.$$

 $x \equiv y[n]$ reads as "x is congruent to y modulo n," which is an equivalence relation defined in $(\mathbb{Z}, +)$. The quotient set is finite and can thus be written :

$$\mathbb{Z}/n\mathbb{Z} = \{ \stackrel{\bullet}{0}, \stackrel{\bullet}{1}, \dots, \stackrel{\bullet}{n-1} \}.$$

For example : $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}, \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}, \mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}, \text{ and } \mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}.$

– Quotient addition on $\mathbb{Z}/n\mathbb{Z}$ induced by \mathbb{Z} is :

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \quad \overset{\bullet}{x} + \overset{\bullet}{y} = \overbrace{x+y}^{\bullet}.$$

– Quotient multiplication on $\mathbb{Z}/n\mathbb{Z}$ induced by \mathbb{Z} is :

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \quad \stackrel{\bullet}{x \times y} = \overbrace{x \times y}^{\bullet}.$$

Proposition 3.14.

L'ensemble $(\mathbb{Z}/n\mathbb{Z}, \stackrel{\bullet}{+})$ est un groupe additif commutatif (groupe quotient de \mathbb{Z} par la relation de congruence).

Démonstration. Laisser au lecteur.

3.2.3.2 Group of Permutations

Definition 3.15. Let E be a set. A permutation of E is a bijection from E to itself. We denote by S_E the set of permutations of E. If $E = \{1, \ldots, n\}$, we simply denote it by S_n . The set S_E , equipped with the composition of mappings, forms a group with identity e = id, called the symmetric group on the set E.

Example 3.7. Let's assume $E = \{1, 2, 3, 4, 5\}$. A permutation $\sigma \in S_5$ is represented as follows :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$

which means $\sigma(1) = 3$, $\sigma(2) = 5$, and so on.

3.2.4 Group Homomorphisms

Definition 3.16. Let (G, *) and (H, T) be two groups. A function f from G to H is a group homomorphism if :

$$\forall x, y \in G, \quad f(x * y) = f(x)Tf(y).$$

Moreover :

- 1. If G = H and * = T, it is called an **endomorphism**.
- 2. If f is bijective, it is an **isomorphism**.
- 3. If f is a bijective endomorphism, it is an **automorphism**.

Example 3.8. The map $x \mapsto 2x$ defines an automorphism of $(\mathbb{R}, +)$.

Example 3.9. The function $f : \mathbb{R} \to \mathbb{R}^*_+$, where \mathbb{R}^*_+ is the set of positive real numbers under multiplication, defined by $f(x) = \exp(x)$, is a group homomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^*_+, \times) because $\exp(x + y) = \exp(x) \times \exp(y)$ for all $x, y \in \mathbb{R}$.

Proposition 3.17. (Properties of Group Homomorphisms) Let f be a homomorphism from (G, *) to (H, T):

- 1. $f(e_G) = e_H$.
- 2. $\forall x \in G, f(x') = (f(x))'.$
- 3. If f is an isomorphism, then its inverse f^{-1} is also an isomorphism from (H,T) to (G,*).
- 4. If G' < G (subgroup of G), then f(G') < H.
- 5. If H' < H (subgroup of H), then $f^{-1}(H') < G$.

Definition 3.18. Let f be a homomorphism from G to H:

1. The kernel of f, denoted Ker(f), is the set of pre-images of e_H :

$$Ker(f) = \{x \in G \mid f(x) = e_H\} = f^{-1}(\{e_H\}).$$

(Note : f is not assumed to be bijective; hence there's no mention of the inverse bijection of f.)

2. The image of f, denoted Im(f), is f(G) (set of images by f of elements of G).

Remarque 3.19. According to the last two points of Proposition 1, the kernel and image of f are respective subgroups of G and H.

Proposition 3.20. Let f be a homomorphism from (G, *) to (H, T):

- 1. f is surjective if and only if Im(f) = H.
- 2. f is injective if and only if $Ker(f) = \{e_G\}$.

Démonstration. The point (1) follows directly from the definition of surjectivity. To prove (2), suppose first that f is injective. Let $x \in \text{Ker}(f)$. Then $f(x) = e_H$, and since $f(e_G) = e_H$ as stated, we conclude $f(x) = f(e_G)$, which implies $x = e_G$ by injectivity of f. Thus, $\text{Ker}(f) = \{e_G\}$. Conversely, suppose $\text{Ker}(f) = \{e_G\}$ and show that f is injective. Consider $x, y \in G$ such that f(x) = f(y). Then $f(x)Tf(y)' = e_H$, so $f(x * y') = e_H$, meaning $x * y' \in \text{Ker}(f)$. The assumption $\text{Ker}(f) = \{e_G\}$ then implies $x * y' = e_G$, hence x = y. Injectivity of f is thus demonstrated, completing the proof. \Box

3.3 Ring Structure

Definition 3.21. A ring is a set equipped with two binary operations (A, *, T) such that :

- 1. (A, *) is a commutative group with identity element denoted by 0_A .
- 2. The operation T is associative and distributive on the left and right with respect to *:

$$\forall x, y, z \in A, \quad xT(y * z) = xTy * xTz \quad \text{and} \quad (x * y)Tz = xTz * yTz$$

3. The operation T has a neutral element different from 0_A , denoted by 1_A .

Example 3.10. $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, and $(\mathbb{C}, +, \times)$ are well-known rings.

- Remarque 3.22. 1. If the operation T is commutative, the ring is called commutative or abelian.
 - 2. The set $A \{0_A\}$ is denoted by A^* .
 - 3. For simplicity, we temporarily use the additive (+) and multiplicative (\times) notations instead of the internal operations * and T. Therefore, we refer to the ring $(A, +, \times)$ instead of (A, *, T).
- **Definition 3.23.** 1. A commutative ring $(A, +, \times)$ is called **integral** if it is (a) non-zero (i.e., $1_A \neq 0_A$),

(b) $\forall (x,y) \in A^2$, $x \times y = 0 \Rightarrow (x = 0 \text{ or } y = 0)$.

2. When a product $a \times b$ is zero but neither a nor b is zero, a and b are called zero divisors.

Example 3.11. 1. $(\mathbb{Z}, +, \times)$ of integers is integral : it has no zero divisors.

2. The ring $\mathbb{Z}/6\mathbb{Z}$ of residue classes modulo 6 is not integral because $2 \times 3 = 6$, hence $2 \times 3 = 0$. Similarly, $\mathbb{Z}/4\mathbb{Z}$.

Proposition 3.24. Let $(A, +, \times)$ be a ring. The following rules apply in rings :

- 1. $x \times 0_A = 0_A \times x = 0_A$. The element 0_A is absorbing for the operation \times .
- 2. $\forall (x,y) \in A^2$, $(-x) \times y = x \times (-y) = -(x \times y)$.
- 3. $\forall x \in A$, $(-1_A) \times x = -x$.

4.
$$\forall (x,y) \in A^2$$
, $(-x) \times (-y) = x \times y$.

5.
$$\forall (x, y, z) \in A^3$$
, $x \times (y - z) = x \times y - x \times z$ and $(y - z) \times x = y \times x - z \times x$.

- Démonstration. 1. $x \times 0_A = x \times (0_A + 0_A) = x \times 0_A + x \times 0_A$. Therefore, by the regularity of elements in the group (A, +), $x \times 0_A = 0_A$. Similarly for the other side.
 - 2. $x \times y + (-x) \times y = (x + (-x)) \times y = 0_A \times y = 0_A$. Thus, $(-x) \times y = -(x \times y)$. Similarly for the other equality.
 - 3. $(-1_A) \times x + x = (-1_A) \times x + 1_A \times x = (-1_A + 1_A) \times x = 0_A \times x = 0_A$. Hence, $(-1_A) \times x = -x$.
 - 4. Left to the reader.
 - 5. Left to the reader.

Notations and Conventions

Let (A, *, T) be a ring. Let n be a non-zero natural number and x an element of A.

1. We denote by nx the element of A that is equal to the composition by the first operation * of n terms equal to x. In other words, for all $n \in \mathbb{N}^*$ and $x \in A$,

$$nx = \underbrace{x * x * \ldots * x}_{\text{n times}}.$$

In particular, for n = 1, we have $1 \cdot x = x$ for all $x \in A$.

2. Similarly, we denote by x^n the element of A that is equal to the composition by the second operation T of n terms equal to x. In other words, for all $n \in \mathbb{N}^*$ and $x \in A$,

$$x^n = \underbrace{xTxT\dots Tx}_{n \text{ times}}.$$

In particular, for n = 1, we have $x^1 = x$ for all $x \in A$.

3. What about n = 0? Let 0_A denote the zero element and 1_A denote the unit element of (A, *, T) (this notation is somewhat unfortunate here because it recalls the additive notation and the multiplicative notation that we are precisely trying to avoid). Then, by convention, for all $x \in A$, $0 \cdot x = 0_A$ and $x^0 = 1_A$.

3.3.1 Subrings

Definition 3.25. Let (A, *, T) be a ring. A non-empty subset A_1 of A is a **subring** of A if :

- 1. $1_A \in A_1$;
- 2. the operations * and T induce binary operations on A_1 , and with these operations, $(A_1, *, T)$ is a ring.

Proposition 3.26. A subset A_1 of A is a subring if and only if :

- 1. $(A_1, *)$ is a subgroup of (A, *);
- 2. $1_A \in A_1$;
- 3. $\forall (x,y) \in A_1^2$, $xTy \in A_1$ (T induces a binary operation on A_1).

Example 3.12. $(\mathbb{Z}, *, T)$ is a subring of $(\mathbb{Q}, *, T)$, which is a subring of $(\mathbb{R}, *, T)$, which is a subring of $(\mathbb{C}, *, T)$.

3.3.2 Ring Homomorphisms

Definition 3.27. Let $(A, +_A, \times_A)$ and $(B, +_B, \times_B)$ be two rings. A ring homomorphism from A to B is a function from A to B such that :

- 1. $f(1_A) = 1_B;$
- 2. for all $x, y \in A$, f(x + Ay) = f(x) + Bf(y) and $f(x \times Ay) = f(x) \times Bf(y)$.

3.3.3 Ideals in a Commutative Ring

Let $(A, +, \times)$ be a commutative ring.

Definition 3.28. (Ideal) A subset I of A is an ideal of a ring $(A, +, \times)$ if

- 1. (I, +) is a subgroup of (A, +),
- 2. for every $a \in A$, we have $aI \subset I$. In other words, $\forall a \in A, \forall x \in I, ax \in I$.

Proposition 3.29. A subset I of A is an ideal of a ring $(A, +, \times)$ if and only if

- 1. I contains the zero element 0_A ,
- 2. for all $x, y \in I$, $x y \in I$,
- 3. $\forall a \in A, \forall x \in I, ax \in I$.
- **Example 3.13.** 1. Any non-trivial ring has at least two ideals : the trivial ideal {0} and A itself. Ideals of A that are distinct from A are called proper ideals.
 - 2. Any element x of A defines a principal ideal : ⟨x⟩ = xA = {ax | a ∈ A}.
 It is the smallest ideal containing a, and we say it is generated by a. If a is invertible (and only in this case), aA = A.
 - 3. More generally, if $x_1, \ldots, x_n \in A$, the smallest ideal containing x_1, \ldots, x_n is :

$$\langle x_1, \dots, x_n \rangle = x_1 A + \dots + x_n A = \{a_1 x_1 + \dots + a_n x_n \mid a_1, \dots, a_n \in A\}.$$

Indeed, it is immediately verified that $I = x_1A + \ldots + x_nA$ is non-empty and stable under linear combinations, hence it is an ideal; and of course, any ideal containing the x_i must contain I. We say I is generated by $\{x_1, \ldots, x_n\}$.

3.4 Field Structure

Definition 3.30. Field

- 1. A field is a commutative ring in which every non-zero element is invertible.
- 2. Moreover, if the second operation \times is commutative on K, then we say that the field $(K, +, \times)$ is commutative.

Example 3.14.

 $(\mathbb{Q}, +, \times)$ and $(\mathbb{R}, +, \times)$ are commutative fields.

Definition 3.31. Subfield

Let $(K, +, \times)$ be a field and let K_1 be a non-empty subset of K.

We say that K_1 is a subfield of K if K_1 is stable under + and \times in K, and K_1 equipped with the induced operations from K forms a field itself.

Example 3.15.

 $(\mathbb{Q}, +, \times)$ is a subfield of $(\mathbb{R}, +, \times)$.

Proposition 3.32.

Let $(K, +, \times)$ be a field. A subset K_1 of K is a subfield if and only if :

- 1. $(K_1, +)$ is a subgroup of (K, +),
- 2. for all $x, y \in K_1$, $x \times y \in K_1$ (stability of K_1 under \times),
- 3. K_1 contains the identity element of K, and the inverse of every $x \in K_1$ in (K, \times) is also an element of K_1 .