Chapitre 3

Algebraic Structures

3.1 Law of internal composition

Definition 3.1.
Let E be a non-empty set.

1. A law of internal composition on F is a function from F x FE to E. If T
denotes this function, then the image of the pair (x,y) € £ x E under T is
denoted as xTy.

2. An structured set is any pair (E,T) where E is a non-empty set and T is

a law of internal composition on FE.

Example 3.1.

The most common internal composition laws are :
1. + in N,N* Z Q,R,C, but not in 2*,Q*, R*, C*

2. —imZ,QR,C

3. x in NN*Z Q,R,C

4. [/ in Q" R* C*

5. 0 (composition of functions) in the set of functions from E to E

6. The law @ defined on R? by (x1,11) ® (T2, y2) = (T1 + To, Y1 + ¥2)

. The law T defined on R by 2Ty =x+y — xy
8. The laws U, N (union, intersection) defined on P(E) (power set of a set E)

Definition 3.2. (Properties of laws)
Let (E,T) be a structured set.
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1. The law T is called associative on F if (zTy)Tz = 2T (yT'2) for all x,y, 2
in b

2. The law T is called commutative on F if 2Ty = yTx for all z,y in E.

Example 3.2.

Addition and multiplication are associative and commutative on N, Z, Q, R, C.
Definition 3.3. (Properties of laws)
Let (E,T) be a structured set.

1. An element e of F is called neutral for the law T if,
Ve e E, xTe=elx =x.

2. If (E,T) has a neutral element e, then an element z of E is said to be

invertible (or symmetrizable) for the law 7T if there exists an element z’ in
E such that :

2Tr =2'Tr=e
The element 2’ is then called the symmetric element of x for the law T

Proposition 3.4.
Let (E,T) be a structured set. If the neutral element of E for the law T exists,

then it 1s unique.

Démonstration. Suppose there exist two neutral elements e and e’. Then,
e =eled =e

which implies e = ¢’. H

Proposition 3.5.
Let (E,T) be a structured set where the law T is associative and has a neutral

element.
1. If x € E is symmetrizable, then its symmetric element is unique.

2. If x € E and y € E are symmetrizable, then Ty is symmetrizable and its
symmetric element (zTy) is given by (zTy) = y'Tz" where z' denotes the

symmetric element of x and 1y’ denotes the symmetric element of y.

Démonstration.



Chapter 3. Algebraic Structures 61

1. Let’s suppose an element x has two symmetric elements 2’ and x”. Then,
2T =e=2"T(aTr) =2" = (2"Tx)T2' = 2" = 2/ =2".

2. We have
(YT2"\T (2Ty) =y'T(2'Tx)Ty = y'Ty = e.

Also,
(2Ty)T(y'Tx") = 2T (yTy)Tz' = 2Tx' =e.

Thus, (2Ty) = y'Tx'.

3.2 Groups

3.2.1 Group Structure

Definition 3.6.
Let (G,T) be a structured set.

1. We say that (G,T) is a group if
(a) the operation T is associative on G,
(b) there exists a neutral element for the operation 7" in G,
(c) every element of G is symmetrizable for the operation 7.
We also say that the set G has a group structure for the operation 7.

2. We say that the group (G, T') is commutative (or abelian) if the operation

T is commutative on G.

Example 3.3.

First, examples of groups are provided :
1. Z, Q, R, C equipped with addition.
2. 7*, QF, R* equipped with multiplication.

Example 3.4.

For various reasons (to be determined), the following pairs are not groups :
1. (N;4), (R, x).
2. (P(E),V), (P(E),N).
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3.2.2 Subgroups

Definition 3.7. (Subgroups)
A subgroup of a group (G, ) is a non-empty subset H of G such that :

1. % induces an internal composition law on H.

2. With this law, H forms a group. We denote this as H < G.

Proposition 3.8.
The subset H C G is a subgroup of a group (G, *) if and only if

I H+0,
2. V(x,y) € H?, xxy € H,
3. VYreH, '€ H.

Example 3.5.

1. Let (G,%) be a group. Then G and {ec} are subgroups of G.
2. (Z,+) is a subgroup of (R,+).

Proposition 3.9.
The subset H C G is a subgroup of a group (G, *) if and only if

I H+40,
2. V(x,y) e H?, xxy '€ H.

Proposition 3.10.
The intersection of any family of subgroups of a group (G,*) is a subgroup of
(G, ).

Démonstration.

Let (H;)ier be a family of subgroups of a group G. Define K = (,.; H;, the
intersection of all H;. The set K is non-empty since it contains the identity element
e, which belongs to each subgroup H;. Let x and y be two elements of K. For every
i € I, we have z x y~! € H; because H; is a subgroup. Therefore, z * y~! € K.
This proves that K is a subgroup of G. ]

Remarque 3.11.
The arbitrary union of subgroups of a group (G, *) is not necessarily a subgroup

of (G, x).
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Example 3.6.
Let T be the internal composition law defined on R? by

V(x1,91), (T2,92) € R?, (x1,11) * (T2, y2) = (21 + 22, Y1 + Y2).

We have (R%,T) is a group, R x {0} and {0} x R are two subgroups of (R?,T) but
R x {0} U {0} x R does not form a subgroup of (R?,T).

Proposition 3.12.
The union of two subgroups H and K of the same group (G, %) is a subgroup
(HUK <G)ifand only if HC K or K C H.

Démonstration.

Suppose H U K is a subgroup of G and H is not included in K, meaning there
exists h € H such that h ¢ K. Let’s show that K C H. Take any k € K. We have
hxk € HN K. However, hxk ¢ K because otherwise h = (hx k) x k' € K. Hence,
hxk € H,implying k =h'x (hx k) € H. O

3.2.3 Examples of Groups
3.2.3.1 The Group Z/nZ

It is initially clear that if n is a positive integer (which we can assume to be positive
and non-zero), the set nZ consisting of integers of the form nk, where k ranges

over Z (the set of multiples of n), is an additive subgroup of (Z, +).

Proposition 3.13.
Every subgroup of (Z,+) is of the form nZ.

Démonstration. Let S be a subgroup of Z other than {0} and Z. Hence, S does
not contain 1. The set of positive integers in S, denoted by S*, has a smallest
element n which is at least 2 (since S is countable and bounded below). Every
integer of the form kn, where k is a natural number, belongs to S (clear from

induction since kn = n +n+ ...+ n). Therefore, S contains nZ.

By Euclidean division, every positive integer in ST that is not of the form kn can
be written as a = kn + r, where 0 < r < n. It follows that r = a — kn > 0.
Since both a and kn are in ST, r must also be in S*. This contradicts n being the
smallest element of S*, hence r = 0. This shows that S = nZ. n
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We easily show that the congruence relation modulo n, where n € N, due to Gauss,

denoted by =, is defined as :
Ve,yeZ, z=vyhnle(x—y) enlZekelZ, y=x—nk.

x = y[n] reads as “x is congruent to y modulo n,” which is an equivalence relation

defined in (Z, +). The quotient set is finite and can thus be written :

7/nZ ={0,1,...,n —1}.

For example : Z/27 = {(.), i}, 7|37 = {(.), i,é}, Z7]AZ = {(.), i,é,é}, and Z/6Z =

{0,1,2,3,4,5}.

— Quotient addition on Z/nZ induced by Z is :

[ ]
—_—

+ .

8

Vo, y € Z/nZ, 5—7—&2

— Quotient multiplication on Z/nZ induced by Z is :

Proposition 3.14.
L’ensemble (Z/nZ, —T—) est un groupe additif commutatif (groupe quotient de Z par

la relation de congruence).

Démonstration. Laisser au lecteur. OJ

3.2.3.2 Group of Permutations

Definition 3.15. Let E be a set. A permutation of E is a bijection from E to
itself. We denote by Sg the set of permutations of E. If £ = {1,...,n}, we simply
denote it by S,,. The set Sg, equipped with the composition of mappings, forms a
group with identity e = id, called the symmetric group on the set E.

Example 3.7. Let’s assume E = {1,2,3,4,5}. A permutation o € Ss is repre-

1 2 345
o =
35 21 4

which means o(1) = 3, 0(2) =5, and so on.

sented as follows :
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3.2.4 Group Homomorphisms

Definition 3.16. Let (G, *) and (H,T) be two groups. A function f from G to

H is a group homomorphism if :

Vo,y € G, f(rxy) = f(x)Tf(y).

Moreover :
1. If G = H and * =T, it is called an endomorphism.
2. If f is bijective, it is an isomorphism.

3. If f is a bijective endomorphism, it is an automorphism.
Example 3.8. The map x — 2x defines an automorphism of (R, +).

Example 3.9. The function f : R — R, where RY s the set of positive real
numbers under multiplication, defined by f(x) = exp(z), is a group homomorphism

from (R, +) to (R, x) because exp(x + y) = exp(x) x exp(y) for all z,y € R.
Proposition 3.17. (Properties of Group Homomorphisms) Let f be a homomor-
phism from (G,x*) to (H,T) :

1. f(eg) =en.

2. Vx e G, f(o') = (f(x))".

3. If f is an isomorphism, then its inverse f~' is also an isomorphism from

(H,T) to (G, ).
4. If G’ < G (subgroup of G), then f(G') < H.
5. If H < H (subgroup of H), then f~'(H') < G.

Definition 3.18. Let f be a homomorphism from G to H :

1. The kernel of f, denoted Ker(f), is the set of pre-images of ey :

Ker(f) ={x € G| f(z) =en} = [ ({en}).

(Note : f is not assumed to be bijective; hence there’s no mention of the

inverse bijection of f.)
2. The image of f, denoted Im(f), is f(G) (set of images by f of elements of
G).

Remarque 3.19. According to the last two points of Proposition 1, the kernel and

image of f are respective subgroups of G and H.
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Proposition 3.20. Let f be a homomorphism from (G,*) to (H,T) :
1. f is surjective if and only if Im(f) = H.
2. f is injective if and only if Ker(f) = {ec}.

Démonstration. The point (1) follows directly from the definition of surjectivity.
To prove (2), suppose first that f is injective. Let « € Ker(f). Then f(z) = eg,
and since f(eg) = ey as stated, we conclude f(x) = f(eq), which implies x = eq
by injectivity of f. Thus, Ker(f) = {eg}. Conversely, suppose Ker(f) = {eq}
and show that f is injective. Consider z,y € G such that f(z) = f(y). Then
f(@)Tf(y) = en, so f(x xy') = ey, meaning x x 3y’ € Ker(f). The assumption
Ker(f) = {eg} then implies x *x y' = eg, hence z = y. Injectivity of f is thus
demonstrated, completing the proof. O

3.3 Ring Structure

Definition 3.21. A ring is a set equipped with two binary operations (A, *,T)
such that :

1. (A, %) is a commutative group with identity element denoted by 04.

2. The operation T is associative and distributive on the left and right with

respect to * :
Ve,y,z € A, 2T (y*z2)=a2Tyx2Tz and (xxy)Tz=aTzxyTlz.

3. The operation T" has a neutral element different from 0,4, denoted by 14.

Example 3.10. (Z,+, x), (Q,+, x), (R,+, x), and (C,+, x) are well-known

Tings.

Remarque 3.22. 1. If the operation T is commutative, the ring is called com-

mutative or abelian.
2. The set A — {04} is denoted by A*.
3. For simplicity, we temporarily use the additive (+) and multiplicative (x)
notations instead of the internal operations * and 71". Therefore, we refer to
the ring (A, +, X) instead of (A, x,T).
Definition 3.23. 1. A commutative ring (A, +, x) is called integral if it is

(a) non-zero (i.e., 14 # 04),
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(b) V(z,y) € A%, zxy=0= (z=0o0ry=0).

2. When a product a X b is zero but neither a nor b is zero, a and b are called

zero divisors.

Example 3.11. 1. (Z,+, x) of integers is integral : it has no zero divisors.

2. The ring Z/6Z of residue classes modulo 6 is not integral because 2 X 3 = é,
hence 2 x 3 = 0. Similarly, Z/4Z.

Proposition 3.24. Let (A, +, X) be a ring. The following rules apply in rings :
1.  x 04 =0y X x=0y. The element 04 is absorbing for the operation X.
2. V(x,y) € A%, (—x)xy=x X (—y) = —(2 X y).
3. NVre A, (—1x)xzx=—x.
4. V(x,y) € A%, (—x) x (—y) =z xy.
5 Y(z,y,2) € A3, x|

y—z)=xxy—xxzand (y—z)Xr=yXxr—2zXI.

Démonstration. 1.2 x04 =2 %x(044+04) =2 x04+ 2z x 04. Therefore, by
the regularity of elements in the group (A, +), X 04 = 04. Similarly for the

other side.

2. axy+(—z)xy=(r+(—2x)) xy =04 xy = 04. Thus, (—z) xy = —(z xy).
Similarly for the other equality.

3. (—la)xx4z=(—1a)xx+1laxx=(—1a+14) Xz =04 xz = 04. Hence,

(—14) Xz = —x.
4. Left to the reader.

5. Left to the reader.

Notations and Conventions

Let (A, *,T) be a ring. Let n be a non-zero natural number and x an element of

A.

1. We denote by nx the element of A that is equal to the composition by the
first operation * of n terms equal to x. In other words, for all n € N* and
T €A,

—

n times

In particular, for n = 1, we have 1 -z = x for all z € A.
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2. Similarly, we denote by z" the element of A that is equal to the composition
by the second operation T" of n terms equal to x. In other words, for all
ne€N*and z € A,

2t =aTxT ... Tx.

n times

In particular, for n = 1, we have 2! = z for all z € A.

3. What about n =07 Let 04 denote the zero element and 1, denote the unit
element of (A,=*,7) (this notation is somewhat unfortunate here because
it recalls the additive notation and the multiplicative notation that we are
precisely trying to avoid). Then, by convention, for all z € A, 0z = 04 and

$0 = 1A-

3.3.1 Subrings

Definition 3.25. Let (A, *,T) be aring. A non-empty subset A; of A is a subring
of Aif:

1. 1€ Ay
2. the operations * and 7' induce binary operations on A;, and with these
operations, (A, *,7T) is a ring.
Proposition 3.26. A subset Ay of A is a subring if and only if :
1. (A1, %) is a subgroup of (A, x) ;
2. 14€ Ay ;
3. V(x,y) € A2, 2Ty € Ay (T induces a binary operation on A;).

Example 3.12. (Z,*,T) is a subring of (Q,,T), which is a subring of (R, *,T),
which is a subring of (C,*,T).

3.3.2 Ring Homomorphisms

Definition 3.27. Let (A, +4, x4) and (B, +p, Xp) be two rings. A ring homo-

morphism from A to B is a function from A to B such that :
L f(1a) = 1p;
2. forallz,y € A, f(x +ay) = f(z)+5 f(y) and f(x xay) = f(x) X f(y).
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3.3.3 Ideals in a Commutative Ring

Let (A, +, X) be a commutative ring.

Definition 3.28. (Ideal) A subset I of A is an ideal of a ring (A, +, x) if
1. (I,+) is a subgroup of (A, +),

2. for every a € A, we have al C I. In other words, Va € A,Vx € I, ax € I.

Proposition 3.29. A subset I of A is an ideal of a ring (A, 4+, X) if and only if
1. I contains the zero element Oy,
2. forallz,yel, x—yel,
3. Yae ANVNrel, ar € 1.
Example 3.13. 1. Any non-trivial ring has at least two ideals : the trivial ideal
{0} and A itself. Ideals of A that are distinct from A are called proper ideals.

2. Any element x of A defines a principal ideal : (x) = xA = {azx | a € A}.
It is the smallest ideal containing a, and we say it s generated by a. If a is

invertible (and only in this case), aA = A.

3. More generally, if x1,...,x, € A, the smallest ideal containing x,...,x,

is :
(1, ..., xp) =m A+ ...+, A={ax1 + ...+ ayz, | aq,...,a, € A}.

Indeed, it is immediately verified that I = x1A+ ...+ x,A is non-empty and
stable under linear combinations, hence it is an ideal ; and of course, any ideal

containing the x; must contain I. We say I is generated by {x1,...,x,}.

3.4 Field Structure
Definition 3.30. Field

1. A field is a commutative ring in which every non-zero element is invertible.
2. Moreover, if the second operation x is commutative on K, then we say that

the field (K, +, x) is commutative.

Example 3.14.
(Q,+, x) and (R, +, X) are commutative fields.
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Definition 3.31. Subfield

Let (K, +, x) be a field and let K; be a non-empty subset of K.

We say that K, is a subfield of K if K is stable under + and x in K, and K;
equipped with the induced operations from K forms a field itself.

Example 3.15.
(Q, +, x) is a subfield of (R, +, x).

Proposition 3.32.

Let (K, 4+, x) be a field. A subset Ky of K is a subfield if and only if :
1. (K1,4) is a subgroup of (K,+),
2. forallx,y € Ky, x xy € Ky (stability of K1 under x),

3. Ky contains the identity element of K, and the inverse of every x € Ky in

(K, x) is also an element of K.
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