
Chapitre 3

Algebraic Structures

3.1 Law of internal composition

Definition 3.1.

Let E be a non-empty set.

1. A law of internal composition on E is a function from E ×E to E. If T
denotes this function, then the image of the pair (x, y) ∈ E × E under T is
denoted as xTy.

2. An structured set is any pair (E, T ) where E is a non-empty set and T is
a law of internal composition on E.

Example 3.1.

The most common internal composition laws are :

1. + in N,N∗,Z,Q,R,C, but not in Z∗,Q∗,R∗,C∗

2. − in Z,Q,R,C

3. × in N,N∗,Z,Q,R,C

4. / in Q∗,R∗,C∗

5. 0 (composition of functions) in the set of functions from E to E

6. The law ⊕ defined on R2 by (x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2)

7. The law T defined on R by xTy = x+ y − xy

8. The laws ∪, ∩ (union, intersection) defined on P (E) (power set of a set E)

Definition 3.2. (Properties of laws)
Let (E, T ) be a structured set.
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1. The law T is called associative on E if (xTy)Tz = xT (yTz) for all x, y, z
in E.

2. The law T is called commutative on E if xTy = yTx for all x, y in E.

Example 3.2.

Addition and multiplication are associative and commutative on N, Z, Q, R, C.

Definition 3.3. (Properties of laws)
Let (E, T ) be a structured set.

1. An element e of E is called neutral for the law T if,

∀x ∈ E, xTe = eTx = x.

2. If (E, T ) has a neutral element e, then an element x of E is said to be
invertible (or symmetrizable) for the law T if there exists an element x′ in
E such that :

xTx′ = x′Tx = e

The element x′ is then called the symmetric element of x for the law T .

Proposition 3.4.

Let (E, T ) be a structured set. If the neutral element of E for the law T exists,
then it is unique.

Démonstration. Suppose there exist two neutral elements e and e′. Then,

e′ = eTe′ = e

which implies e = e′.

Proposition 3.5.

Let (E, T ) be a structured set where the law T is associative and has a neutral
element.

1. If x ∈ E is symmetrizable, then its symmetric element is unique.

2. If x ∈ E and y ∈ E are symmetrizable, then xTy is symmetrizable and its
symmetric element (xTy)′ is given by (xTy)′ = y′Tx′ where x′ denotes the
symmetric element of x and y′ denotes the symmetric element of y.

Démonstration.
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1. Let’s suppose an element x has two symmetric elements x′ and x′′. Then,

xTx′ = e⇒ x′′T (xTx′) = x′′ ⇒ (x′′Tx)Tx′ = x′′ ⇒ x′ = x′′.

2. We have
(y′Tx′)T (xTy) = y′T (x′Tx)Ty = y′Ty = e.

Also,
(xTy)T (y′Tx′) = xT (yTy′)Tx′ = xTx′ = e.

Thus, (xTy)′ = y′Tx′.

3.2 Groups

3.2.1 Group Structure

Definition 3.6.

Let (G, T ) be a structured set.

1. We say that (G, T ) is a group if

(a) the operation T is associative on G,

(b) there exists a neutral element for the operation T in G,

(c) every element of G is symmetrizable for the operation T .

We also say that the set G has a group structure for the operation T .

2. We say that the group (G, T ) is commutative (or abelian) if the operation
T is commutative on G.

Example 3.3.

First, examples of groups are provided :

1. Z, Q, R, C equipped with addition.

2. Z∗, Q∗, R∗ equipped with multiplication.

Example 3.4.

For various reasons (to be determined), the following pairs are not groups :

1. (N,+), (R,×).

2. (P(E),∪), (P(E),∩).
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3.2.2 Subgroups

Definition 3.7. (Subgroups)
A subgroup of a group (G, ∗) is a non-empty subset H of G such that :

1. ∗ induces an internal composition law on H.

2. With this law, H forms a group. We denote this as H < G.

Proposition 3.8.

The subset H ⊂ G is a subgroup of a group (G, ∗) if and only if

1. H 6= ∅,

2. ∀(x, y) ∈ H2, x ∗ y ∈ H,

3. ∀x ∈ H, x−1 ∈ H.

Example 3.5.

1. Let (G, ∗) be a group. Then G and {eG} are subgroups of G.

2. (Z,+) is a subgroup of (R,+).

Proposition 3.9.

The subset H ⊂ G is a subgroup of a group (G, ∗) if and only if

1. H 6= ∅,

2. ∀(x, y) ∈ H2, x ∗ y−1 ∈ H.

Proposition 3.10.

The intersection of any family of subgroups of a group (G, ∗) is a subgroup of
(G, ∗).

Démonstration.
Let (Hi)i∈I be a family of subgroups of a group G. Define K =

⋂
i∈I Hi, the

intersection of all Hi. The setK is non-empty since it contains the identity element
e, which belongs to each subgroup Hi. Let x and y be two elements of K. For every
i ∈ I, we have x ∗ y−1 ∈ Hi because Hi is a subgroup. Therefore, x ∗ y−1 ∈ K.
This proves that K is a subgroup of G.

Remarque 3.11.
The arbitrary union of subgroups of a group (G, ∗) is not necessarily a subgroup
of (G, ∗).
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Example 3.6.

Let T be the internal composition law defined on R2 by

∀(x1, y1), (x2, y2) ∈ R2, (x1, y1) ∗ (x2, y2) = (x1 + x2, y1 + y2).

We have (R2, T ) is a group, R×{0} and {0}×R are two subgroups of (R2, T ) but
R× {0} ∪ {0} × R does not form a subgroup of (R2, T ).

Proposition 3.12.

The union of two subgroups H and K of the same group (G, ∗) is a subgroup
(H ∪K < G) if and only if H ⊂ K or K ⊂ H.

Démonstration.
Suppose H ∪ K is a subgroup of G and H is not included in K, meaning there
exists h ∈ H such that h /∈ K. Let’s show that K ⊂ H. Take any k ∈ K. We have
h ∗ k ∈ H ∩K. However, h ∗ k /∈ K because otherwise h = (h ∗ k) ∗ k′ ∈ K. Hence,
h ∗ k ∈ H, implying k = h′ ∗ (h ∗ k) ∈ H.

3.2.3 Examples of Groups

3.2.3.1 The Group Z/nZ

It is initially clear that if n is a positive integer (which we can assume to be positive
and non-zero), the set nZ consisting of integers of the form nk, where k ranges
over Z (the set of multiples of n), is an additive subgroup of (Z,+).

Proposition 3.13.

Every subgroup of (Z,+) is of the form nZ.

Démonstration. Let S be a subgroup of Z other than {0} and Z. Hence, S does
not contain 1. The set of positive integers in S, denoted by S+, has a smallest
element n which is at least 2 (since S is countable and bounded below). Every
integer of the form kn, where k is a natural number, belongs to S (clear from
induction since kn = n+ n+ . . .+ n). Therefore, S contains nZ.

By Euclidean division, every positive integer in S+ that is not of the form kn can
be written as a = kn + r, where 0 < r < n. It follows that r = a − kn > 0.
Since both a and kn are in S+, r must also be in S+. This contradicts n being the
smallest element of S+, hence r = 0. This shows that S = nZ.
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We easily show that the congruence relation modulo n, where n ∈ N, due to Gauss,
denoted by ≡, is defined as :

∀x, y ∈ Z, x ≡ y[n]⇔ (x− y) ∈ nZ⇔ ∃k ∈ Z, y = x− nk.

x ≡ y[n] reads as “x is congruent to y modulo n,” which is an equivalence relation
defined in (Z,+). The quotient set is finite and can thus be written :

Z/nZ = {
•
0,
•
1, . . . ,

•

n̂− 1}.

For example : Z/2Z = {
•
0,
•
1}, Z/3Z = {

•
0,
•
1,
•
2}, Z/4Z = {

•
0,
•
1,
•
2,
•
3}, and Z/6Z =

{
•
0,
•
1,
•
2,
•
3,
•
4,
•
5}.

– Quotient addition on Z/nZ induced by Z is :

∀x, y ∈ Z/nZ, •
x
•
+
•
y =

•

x̂+ y.

– Quotient multiplication on Z/nZ induced by Z is :

∀x, y ∈ Z/nZ, •
x
•
× •y =

•

x̂× y.

Proposition 3.14.

L’ensemble (Z/nZ,
•
+) est un groupe additif commutatif (groupe quotient de Z par

la relation de congruence).

Démonstration. Laisser au lecteur.

3.2.3.2 Group of Permutations

Definition 3.15. Let E be a set. A permutation of E is a bijection from E to
itself. We denote by SE the set of permutations of E. If E = {1, . . . , n}, we simply
denote it by Sn. The set SE, equipped with the composition of mappings, forms a
group with identity e = id, called the symmetric group on the set E.

Example 3.7. Let’s assume E = {1, 2, 3, 4, 5}. A permutation σ ∈ S5 is repre-
sented as follows :

σ =

(
1 2 3 4 5

3 5 2 1 4

)
which means σ(1) = 3, σ(2) = 5, and so on.
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3.2.4 Group Homomorphisms

Definition 3.16. Let (G, ∗) and (H,T ) be two groups. A function f from G to
H is a group homomorphism if :

∀x, y ∈ G, f(x ∗ y) = f(x)Tf(y).

Moreover :

1. If G = H and ∗ = T , it is called an endomorphism.

2. If f is bijective, it is an isomorphism.

3. If f is a bijective endomorphism, it is an automorphism.

Example 3.8. The map x 7→ 2x defines an automorphism of (R,+).

Example 3.9. The function f : R → R∗+, where R∗+ is the set of positive real
numbers under multiplication, defined by f(x) = exp(x), is a group homomorphism
from (R,+) to (R∗+,×) because exp(x+ y) = exp(x)× exp(y) for all x, y ∈ R.

Proposition 3.17. (Properties of Group Homomorphisms) Let f be a homomor-
phism from (G, ∗) to (H,T ) :

1. f(eG) = eH .

2. ∀x ∈ G, f(x′) = (f(x))′.

3. If f is an isomorphism, then its inverse f−1 is also an isomorphism from
(H,T ) to (G, ∗).

4. If G′ < G (subgroup of G), then f(G′) < H.

5. If H ′ < H (subgroup of H), then f−1(H ′) < G.

Definition 3.18. Let f be a homomorphism from G to H :

1. The kernel of f , denoted Ker(f), is the set of pre-images of eH :

Ker(f) = {x ∈ G | f(x) = eH} = f−1({eH}).

(Note : f is not assumed to be bijective ; hence there’s no mention of the
inverse bijection of f .)

2. The image of f , denoted Im(f), is f(G) (set of images by f of elements of
G).

Remarque 3.19. According to the last two points of Proposition 1, the kernel and
image of f are respective subgroups of G and H.
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Proposition 3.20. Let f be a homomorphism from (G, ∗) to (H,T ) :

1. f is surjective if and only if Im(f) = H.

2. f is injective if and only if Ker(f) = {eG}.

Démonstration. The point (1) follows directly from the definition of surjectivity.
To prove (2), suppose first that f is injective. Let x ∈ Ker(f). Then f(x) = eH ,
and since f(eG) = eH as stated, we conclude f(x) = f(eG), which implies x = eG

by injectivity of f . Thus, Ker(f) = {eG}. Conversely, suppose Ker(f) = {eG}
and show that f is injective. Consider x, y ∈ G such that f(x) = f(y). Then
f(x)Tf(y)′ = eH , so f(x ∗ y′) = eH , meaning x ∗ y′ ∈ Ker(f). The assumption
Ker(f) = {eG} then implies x ∗ y′ = eG, hence x = y. Injectivity of f is thus
demonstrated, completing the proof.

3.3 Ring Structure

Definition 3.21. A ring is a set equipped with two binary operations (A, ∗, T )

such that :

1. (A, ∗) is a commutative group with identity element denoted by 0A.

2. The operation T is associative and distributive on the left and right with
respect to ∗ :

∀x, y, z ∈ A, xT (y ∗ z) = xTy ∗ xTz and (x ∗ y)Tz = xTz ∗ yTz.

3. The operation T has a neutral element different from 0A, denoted by 1A.

Example 3.10. (Z,+,×), (Q,+,×), (R,+,×), and (C,+,×) are well-known
rings.

Remarque 3.22. 1. If the operation T is commutative, the ring is called com-
mutative or abelian.

2. The set A− {0A} is denoted by A∗.

3. For simplicity, we temporarily use the additive (+) and multiplicative (×)
notations instead of the internal operations ∗ and T . Therefore, we refer to
the ring (A,+,×) instead of (A, ∗, T ).

Definition 3.23. 1. A commutative ring (A,+,×) is called integral if it is

(a) non-zero (i.e., 1A 6= 0A),
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(b) ∀(x, y) ∈ A2, x× y = 0⇒ (x = 0 or y = 0).

2. When a product a× b is zero but neither a nor b is zero, a and b are called
zero divisors.

Example 3.11. 1. (Z,+,×) of integers is integral : it has no zero divisors.

2. The ring Z/6Z of residue classes modulo 6 is not integral because
•
2×

•
3 =

•
6,

hence
•
2×

•
3 =

•
0. Similarly, Z/4Z.

Proposition 3.24. Let (A,+,×) be a ring. The following rules apply in rings :

1. x× 0A = 0A × x = 0A. The element 0A is absorbing for the operation ×.

2. ∀(x, y) ∈ A2, (−x)× y = x× (−y) = −(x× y).

3. ∀x ∈ A, (−1A)× x = −x.

4. ∀(x, y) ∈ A2, (−x)× (−y) = x× y.

5. ∀(x, y, z) ∈ A3, x× (y− z) = x× y−x× z and (y− z)×x = y×x− z×x.

Démonstration. 1. x × 0A = x × (0A + 0A) = x × 0A + x × 0A. Therefore, by
the regularity of elements in the group (A,+), x×0A = 0A. Similarly for the
other side.

2. x×y+(−x)×y = (x+(−x))×y = 0A×y = 0A. Thus, (−x)×y = −(x×y).
Similarly for the other equality.

3. (−1A)×x+x = (−1A)×x+1A×x = (−1A+1A)×x = 0A×x = 0A. Hence,
(−1A)× x = −x.

4. Left to the reader.

5. Left to the reader.

Notations and Conventions

Let (A, ∗, T ) be a ring. Let n be a non-zero natural number and x an element of
A.

1. We denote by nx the element of A that is equal to the composition by the
first operation ∗ of n terms equal to x. In other words, for all n ∈ N∗ and
x ∈ A,

nx = x ∗ x ∗ . . . ∗ x︸ ︷︷ ︸
n times

.

In particular, for n = 1, we have 1 · x = x for all x ∈ A.
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2. Similarly, we denote by xn the element of A that is equal to the composition
by the second operation T of n terms equal to x. In other words, for all
n ∈ N∗ and x ∈ A,

xn = xTxT . . . Tx︸ ︷︷ ︸
n times

.

In particular, for n = 1, we have x1 = x for all x ∈ A.

3. What about n = 0 ? Let 0A denote the zero element and 1A denote the unit
element of (A, ∗, T ) (this notation is somewhat unfortunate here because
it recalls the additive notation and the multiplicative notation that we are
precisely trying to avoid). Then, by convention, for all x ∈ A, 0 · x = 0A and
x0 = 1A.

3.3.1 Subrings

Definition 3.25. Let (A, ∗, T ) be a ring. A non-empty subset A1 of A is a subring
of A if :

1. 1A ∈ A1 ;

2. the operations ∗ and T induce binary operations on A1, and with these
operations, (A1, ∗, T ) is a ring.

Proposition 3.26. A subset A1 of A is a subring if and only if :

1. (A1, ∗) is a subgroup of (A, ∗) ;

2. 1A ∈ A1 ;

3. ∀(x, y) ∈ A2
1, xTy ∈ A1 (T induces a binary operation on A1).

Example 3.12. (Z, ∗, T ) is a subring of (Q, ∗, T ), which is a subring of (R, ∗, T ),
which is a subring of (C, ∗, T ).

3.3.2 Ring Homomorphisms

Definition 3.27. Let (A,+A,×A) and (B,+B,×B) be two rings. A ring homo-
morphism from A to B is a function from A to B such that :

1. f(1A) = 1B ;

2. for all x, y ∈ A, f(x+A y) = f(x) +B f(y) and f(x×A y) = f(x)×B f(y).
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3.3.3 Ideals in a Commutative Ring

Let (A,+,×) be a commutative ring.

Definition 3.28. (Ideal) A subset I of A is an ideal of a ring (A,+,×) if

1. (I,+) is a subgroup of (A,+),

2. for every a ∈ A, we have aI ⊂ I. In other words, ∀a ∈ A, ∀x ∈ I, ax ∈ I.

Proposition 3.29. A subset I of A is an ideal of a ring (A,+,×) if and only if

1. I contains the zero element 0A,

2. for all x, y ∈ I, x− y ∈ I,

3. ∀a ∈ A,∀x ∈ I, ax ∈ I.

Example 3.13. 1. Any non-trivial ring has at least two ideals : the trivial ideal
{0} and A itself. Ideals of A that are distinct from A are called proper ideals.

2. Any element x of A defines a principal ideal : 〈x〉 = xA = {ax | a ∈ A}.
It is the smallest ideal containing a, and we say it is generated by a. If a is
invertible (and only in this case), aA = A.

3. More generally, if x1, . . . , xn ∈ A, the smallest ideal containing x1, . . . , xn
is :

〈x1, . . . , xn〉 = x1A+ . . .+ xnA = {a1x1 + . . .+ anxn | a1, . . . , an ∈ A}.

Indeed, it is immediately verified that I = x1A+ . . .+xnA is non-empty and
stable under linear combinations, hence it is an ideal ; and of course, any ideal
containing the xi must contain I. We say I is generated by {x1, . . . , xn}.

3.4 Field Structure

Definition 3.30. Field

1. A field is a commutative ring in which every non-zero element is invertible.

2. Moreover, if the second operation × is commutative on K, then we say that
the field (K,+,×) is commutative.

Example 3.14.

(Q,+,×) and (R,+,×) are commutative fields.
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Definition 3.31. Subfield

Let (K,+,×) be a field and let K1 be a non-empty subset of K.
We say that K1 is a subfield of K if K1 is stable under + and × in K, and K1

equipped with the induced operations from K forms a field itself.

Example 3.15.

(Q,+,×) is a subfield of (R,+,×).

Proposition 3.32.

Let (K,+,×) be a field. A subset K1 of K is a subfield if and only if :

1. (K1,+) is a subgroup of (K,+),

2. for all x, y ∈ K1, x× y ∈ K1 (stability of K1 under ×),

3. K1 contains the identity element of K, and the inverse of every x ∈ K1 in
(K,×) is also an element of K1.
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