Thermodynamics and solution chemistry

Series N°5

Exercise N° 1:

- I- Consider the reaction and its rate law given below $2 A(g) + B(g) \rightarrow C(g)$
- Rate = $k[A]^{2}[B]$, at the beginning of one trial of this reaction, [A] = 4.0 and [B] = 1.0.

The rate of formation of C was 0.048 mole $L^{-1} \sec^{-1}$

- 1- Give the numerical value of k, the rate constant for this reaction.
- 2- Which is the label for k, the rate constant?
- 3- When [B] decreases 0.4 M, what will be the value of [A]?
- **II-** The first order decomposition of some radioactive isotope is 3 days. What percentage of the original substance will have decayed after 12 days have passed?
 - III- For the reaction A+2B \rightarrow 2CA+2B \rightarrow 2C, the rate of reaction is 1.75 x 10⁻⁵ M s⁻¹ at the time when [A]=0.3575M.
 - a. What is the rate of formation of C?
 - b. What will [A] be 1 minute later?
 - c. Assume the rate remains at 1.75 x 10-5M s⁻¹. How long would it take for [A] to change from 0.3580 to 0.3500M?

Exercise N° 2:

exp	Initial [A] (mol L^{-1})	Initial [B] (mol L^{-1})	Initial rate of formation of [C] (mol $L^{-1} \sec^{-1}$)
1	0.10	0.10	$2.5 imes10^{-4}$
2	0.20	0.10	$5.0 imes 10^{-4}$
3	0.20	0.50	$1.25 imes 10^{-2}$

The initial-rate data in the table above were obtained for the reaction represented below.

1. What is the experimental rate law for the reaction $A + B \Leftrightarrow 2C$

Exercise N° 3:

- I- Given the data below for the reaction of the decomposition of iodoethane into ethane and hydrogen iodide,
- a- Calculate the activation energy for the reaction.

T (K)	k (s ⁻¹)
660	7.2 * 10 ⁻⁴
680	$2.2 * 10^{-3}$
720	$1.7 * 10^{-2}$
760	0.11

- b- What is the value of the rate constant at 400 °C?
- **II-** Which sets of data correspond to a:
- a. Zero order reaction
- b. First order reaction
- c. Second order reaction

Thermodynamics and solution chemistry

Ι		п		III	
Time(s)	[A] , M	Time(s)	[B] , M	Time(s)	[C] , M
25	1	0	5	0	2.23
50	0.85	25	2.5	25	1.82
75	0.70	50	1.67	50	1.49
100	0.55	75	1.25	75	1.21
125	0.40	100	1	-	-
150	0.25	_	-	-	-
200	0.10	-	-	-	-

Doctor: Bougueria Hassiba.