Abdelhafid Boussouf University Center - Mila Institute of Natural and Life Sciences LSFY

Thermodynamics and solution chemistry

Series N°4

Exercise N° 1:

- 1- Calculate the Ksp for Ce $(IO_3)_4$, given that its molar solubility is $1.80 \times 10^{-4} \text{ mol/L}$.
- 2- The molar solubility of $Ba_3(PO_4)_2$ is 8.89 x 10⁻⁹ M in pure water. Calculate the K_{sp} for $Ba_3(PO_4)^2$
- 3- Barium Carbonate (BaCO₃) has a solubility product of $K_{sp} = 8.1 \times 10^{-9}$ at 25°C for the equilibrium

 $BaCO_3 \rightleftharpoons Ba^{2+} + CO_3^{-2}$

- a- Calculate the molar solubility of Barium Carbonate in the water at 25°C.
- b- Calculate the molar solubility of Barium Carbonate in 0.1M PbCO₃.

Exercise N° 2:

Given copper (II) hydroxide, Cu (OH)₂. The concentration of Cu²⁺ and OH⁻ at equilibrium in 25°C water is 1.765×10^{-7} M and 3.530×10^{-7} M respectively.

- a. Find the K_{sp} .
- b. Find the molar solubility of Cu (OH)₂ in 0.100M NaOH.

Exercise N° 3:

1- An aqueous solution at 25 °C is 0.10 M in both Ba²⁺ and Ca²⁺ ions. One wants to separate the two ions by taking advantage of the different solubility of BaCO₃ and CaCO₃.

BaCO₃Ksp= 2.58×10^{-9} M.

 $CaCO_{3}Ksp=3.36 \times 10^{-9}M.$

What is the highest possible CO_3^{2-} concentration that allows only one salt to present at equilibrium? Which ion is present in the solid, Ba^{2+} or Ca^{2+} ?

- 2- Calculate the pH of a saturated solution of Cu(OH)₂, $K_{sp} = 1.6 \times 10^{-19}$
- 3- What is the minimum pH at which $Cr(OH)_3$ will precipitate if the solution has $[Cr^{3+}] = 0.0670 \text{ M}? \text{ K}_{sp}$ of $Cr(OH)_3$ is 6.70 x 10^{-31}
- 4- When NaF is added slowly to a solution that is 0.025 M Ba²⁺ and 0.025 M Ca²⁺ what will the concentration of calcium be when the barium just begins to precipitate? K_{sp} (BaF₂) = 1.0 x 10⁻⁷; K_{sp} (CaF₂) = 1.7 x 10⁻¹⁰.

Doctor: Bougueria Hassiba.