Abdelhafid Boussouf University Center - Mila Institute of Natural and Life Sciences LSFY

Academic year 2023-2024

Thermodynamics and solution chemistry

<u>Series N°3</u>

Exercise N° 1:

I)Complete and balance the following equation:

MnO_4^-	+	Fe ²⁺	\Leftrightarrow	Mn^{2+}	+	Fe ³⁺	(Acidic medium, basic medium)
ClO_3^-	+	Fe^{2+}	\Leftrightarrow	Cl-	+	Fe ³⁺	(acidic medium).
ClO_3^-	+	CrO_2^-	\Leftrightarrow	Cl	+	CrO_4^{2-}	(Basic medium).
$Cr_2O_7^{2-}$	+	Fe ²⁺	\Leftrightarrow	Cr^{3+}	+	Fe ³⁺	(Acidic medium).
I_2	+	H_2S	\Leftrightarrow	I—	+	S	(acidic medium).
IO_{3}^{-}	+	Cr(OH) ₃	\Leftrightarrow	CrO_{4}^{2-}	+	I —	(Basic medium).
Al	+	NO_3^-	\Leftrightarrow	$Al(OH)_4^-$	+	NH ₃	(Basic medium).

II) Considering the previous results

1) Calculate the molarity of a normal solution of KIO₃?

2) Calculate the normality of a Deci molar solution of K₂CrO₇?

3) What mass must be dissolved in 350 ml of water to obtain a solution of H₂S at 0.08 eqg/l?

Exercise N° 2:

I) We have four aqueous solutions of HCl, FeSO4, MgCl₂ and AgNO₃ and three blades of iron, magnesium and silver.

- What happens if we immerse the slides in each of the solutions?

Data: $E^{\circ}Fe^{2+}/Fe = -0.44 \text{ V}$ $E^{\circ}Mg^{2+}/Mg = -2.37 \text{ V}$ $E^{\circ}Ag^{+}/Ag = +0.80 \text{ V}$

Exercise N° 3:

You make a voltaic cell with chromium metal in 0.1 M $Cr(NO_3)_3$ solution as one half-cell ($E^o_{Cr/Cr3+} = -0.74 V$) and silver metal in 0.1 M Ag(NO₃) solution at the other half-cell ($E^o_{Ag+/Ag} = +0.80V$).

- 1- Draw the voltaic cell represented by this reaction and label the cathode, the anode, the salt bridge, the positive electrode, and the negative electrode.
- 2- Construct the Cell Diagram (A simplified representation of the cell).
- 3- Write the half-reaction that describes the chemistry at the anode.
- 4- Write the half-reaction that describes the chemistry at the cathode.
- 5- Write the overall reaction.
- 6- Using the above concentration cell, determine the **emf**.
- 7- What is the equilibrium constant for the system and for what concentration of Ag⁺ and Cr³⁺ will the EMF of the cell be zero. Conclude.