
Introduction to Basic 
Logic Circuits.
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Subject: Machine Structure 2

Subject Content: 

 Chapter 1: Introduction. 
 Chapter 2: Combinatorial Logic. 
 Chapter 3: Sequential Logic. 
 Chapter 4: Integrated Circuits.

 Assessment Method: Exam (60%), 
 Continuous assessment (40%).



Introduction
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• Every computer is designed using integrated
circuits, each with a specialized function:

• (Arithmetic and Logic Unit (ALU),
• Memory,
• Instruction decoding circuit, etc.).
These circuits are made up of logic circuits
whose purpose is to perform operations on
logical variables (binary).
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Logic circuits are constructed from
Electronic components, 
such as transistors.

Types of logic circuits: 

Combinatorial 
Sequential

Introduction



Combinatorial circuits
Theoretical foundation  Boolean algebra 
The output functions are expressed in logical 
expressions of only the input variables.

A combinatorial circuit is defined by one or more 
logical functions.

Imputs
Combinatorial

circuits
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Outputs



Sequential Circuits or Memory Circuits
• Theoretical Basis – FSM (Finite State Machine) 

• The output functions depend not only on the current 
state of input variables but also on the previous state 
of certain output variables (memory properties).

Combinatorial Part

Memory

Inputs Outputs
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Reminder: Boolean Variables
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• A binary system is a system that can only exist in 
two permitted states. 

• Various notations can be used to represent these 
two states: 
 Numeric: 1 and 0 
 Logical: true and false 
 Electronic: ON and OFF, high and low 
 A logical variable is a variable that can take two 

states or values: true (T) or false (F). 
By associating T with the binary digit 1 and F with 
the binary digit 0, this type of variable becomes a 
Boolean or binary variable.



Combinatorial Circuits
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• A combinational circuit is defined when its 
number of inputs, number of outputs, and the 
state of each output based on the inputs have 
been specified. 

• This information is provided through a truth 
table. 

• The truth table of a function with n variables has 
2n rows - input states. 

• Boolean algebra and logical functions form the 
theoretical basis of combinationals circuits.



i0 i1 F0(i0, i1)

0 0

0 1

1 0

1 1

i1 i3 i4 F1(i1, i3 , i4)

0 0 0

0 0 1

0 1 0

0 1 1

. . .

1 1 1

i0 i1 i2 . . . in F0(i0, i1) F1(i1, i3 , i4) . . . Fm(i9, in)

0 0 0 … 0

0 0 0 … 1

. . .

. . .

1 1 1… 1
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Truth tables



logic Gates
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• In electronics, the two states of a Boolean variable 
are associated with two voltage levels: 

• V(0) and V(1) for states 0 and 1, respectively. 

• Any logical function can be implemented using a set 
of basic logical functions called gates. A circuit is 
represented by a logic diagram.

Level Positive Logic Negative Logic
High 1 0
Low 0 1



• At least two inputs.

• The output of an OR function is in state 1 if at
least one of its inputs is in state 1.

A B Y = A + B

0 0 0

0 1 1

1 0 1

1 1 1
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logic Gate OR



• At least two inputs. 

• The output of an AND function is in state 1 
if and only if all of its inputs are in state 1.

A B Y = A • B

0 0 0

0 1 0

1 0 0

1 1 1

15

logic Gate AND



• Single input and single output. 

• The output of a NOT function is in state 1 if 
and only if its input is in state 0.

A Y = A

0 1

1 0
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logic Gate NOT



17

The "NOT" gate has only one input and one output. It 
simply inverts the signal: if the input signal is HIGH, the 
output signal is LOW. If the input signal is LOW, then 
the output signal is HIGH.



• Is formed by an inverter at the output of 
an AND gate.

A B Y = A • B

0 0 1

0 1 1

1 0 1

1 1 0
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logic Gate NOT AND (NAND)
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The NAND gate does exactly the opposite of an 
AND gate, so its output is low only if all of its inputs 
are high.



• A negation at the output of an OR gate
constitutes a NOR function (NOT OR).

A B Y = A + B

0 0 1

0 1 0

1 0 0

1 1 0
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logic Gate NOT OR (NOR)
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And here is the transistor-based circuit that allows 
obtaining a NOR gate (transistors).



• At least two inputs. 

• The output of an XOR function is in state 1 if 
the number of its inputs at 1 is an odd number.

A B Y = A B

0 0 0

0 1 1

1 0 1

1 1 0
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logic Gate Exclusive OR (XOR)



Implementation of Boolean Functions
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• Any logical function can be implemented using 
gates. 

• Implementation of a Boolean function: Write 
the equation of the function based on its truth 
table. 

• Simplify the equation. Implement the equation 
using available gates.



How to turn a truth table into a 
Boolean function
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From the truth table, we can have two analytical 
forms, known as canonical forms:

 Canonical sum of products (Minterm)

 Canonical product of sums (Maxterm)



Canonical expressions
• 3 variables, a product term, which we call a minterm, 

equal to the AND of the variables that make up this 
combination.

P0 P1 P2 P3 P4 P5 P6 P7

x y z
0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0 0 0 0

3 0 1 1 0 0 0 1 0 0 0 0

4 1 0 0 0 0 0 0 1 0 0 0

5 1 0 1 0 0 0 0 0 1 0 0

6 1 1 0 0 0 0 0 0 0 1 0

7 1 1 1 0 0 0 0 0 0 0 1
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Example of canonical expressions 

A B C F P3 + P5 + P6 + P7

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

F(A, B, C) = P3 + P5 + P6 + P7

This general way of writing a 
Boolean function is called the 
canonical sum of products.

F ( A, B,C)  ABC  ABC  ABC  ABC  (3,5,6,7)
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Canonical Expressions (POS)
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• 3 variables, sum term, referred to as 
maxterm, equal to the OR of the variables 
that make up this combination.

S0 S1 S2 S3 S4 S5 S6 S7

X Y Z

X+Y+Z

_  

X+Y+Z
_  

X+Y+Z
_ _  

X+Y+Z

_  

X+Y+Z
_ _

X+Y+Z

_ _  

X+Y+Z

_ _ _  

X+Y+Z

0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 0 1 1 1 1 1 1

2 0 1 0 1 1 0 1 1 1 1 1

3 0 1 1 1 1 1 0 1 1 1 1

4 1 0 0 1 1 1 1 0 1 1 1

5 1 0 1 1 1 1 1 1 0 1 1

6 1 1 0 1 1 1 1 1 1 0 1

7 1 1 1 1 1 1 1 1 1 1 0



F(X, Y, Z) = S0 · S1 · S2· S4

This expression is 
called the canonical 
product of sums.
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Canonical Expressions (POS)



Canonical Expressions

Canonical expressions express a Boolean 
function using the logical operators AND, OR, 
NOT.

A function can be implemented using the gates 
AND, OR, NOT.
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Canonical Expressions of a 
Logical Function

A B C F P3 + P5 + P6 + P7

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

ABC
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A B C F S0 · S1 · S2 · S4

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A+B+C
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Canonical Expressions of a 
Logical Function



Equivalence Relationship of Circuits
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• Major Concerns for Designers 

• Reduce the number of gates required for system 
implementation. 

 Minimize the cost in terms of the number of packages. 

 Electrical power consumption. 

• Minimize complexity. 

 Create an equivalent system with certain optimized 
parameters. 

• Search for equivalence. 

 Use the laws and theorems of Boolean algebra.



Summary of Basic Boolean Identities
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OR (A + B) + C = A + (B + C) = A + B + C

A + B = B + A

A + A = A

A + 0 = A

A + 1 = 1

AND (A • B) • C = A • (B • C) = A • B • C

A • B = B • A

A • A = A

A • 1 = A

A • 0 = 0

Distributivity A • (B + C) = (A • B) + (A • C)

A + (B • C) = (A + B) • (A + C)



NOT A  A

A A 1

A  A 0

Absorption Law, A + (A • B) = A  

A • (A + B) = A

De Morgan's Law A  B  C  ...  A  B  C  ...

A  B  C  ...  A  B  C  ...

Exclusive OR A  B  ( A  B )  ( A  B )

A  B  ( A  B )  ( B  A )

A  B  ( A  B )  ( A  B )

A  B  ( A  B )  ( A  B )

A  B  A  B  A  B
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Summary of Basic Boolean Identities



Equivalence Relationship of Circuits

• Algebraic Manipulation

35
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Two logical functions are equivalent:

if and only if,

the values of their outputs are the same for all 
identical configurations of their input 
variables.

Equivalence Relationship of Circuits



logical Fonctions
• Any Boolean function of any number of variables 

can be expressed using the three basic functions 
AND, OR, and NOT. 

• The set { AND, OR, NOT } is complete.

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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• { NOT-AND (NAND) } is complete and minimal. 
The gates NOT, OR, and AND can be obtained from 
NOT-AND gates.

38

Set { NOT-AND (NAND) }



• { NOT-AND (NAND) } is complete and minimal. 
The gates NOT, OR, and AND can be obtained from 
NOT-AND gates.

39

Set { NOT-AND (NAND) }



• { NOT-OR (NOR) } is complete and minimal. The 
gates NOT, OR, and AND can be obtained from 
NOT-OR gates.
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Set { NOT-OR (NOR) }



Logical Circuit Analysis
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• Finding its logical function 
• Principle
• Provide the expression of the outputs for each 

gate/component based on the input values. 
• Finally deduce the logical function(s) of the 

circuit. 
• Next, one can Determine the truth table of the 

circuit. 
• Simplify the logical function.



Example: 3 inputs, 1 output Composed uniquely of 
OR, AND, and NOT logic gates.

• From its logic diagram

f (a,b,c) (ab)(bc)

42

Logical Circuit Analysis



a b c f

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

f (a,b,c) (ab)(bc)
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Logical Circuit Analysis
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• From a logical function, find the corresponding 
logic diagram for that function 

• Principle 
• Simplify the logical function using two methods:

• The algebraic method (Boolean algebra) 
• The Karnaugh map method 
• Deduce the corresponding logic diagram.

Synthesis of a logical circuit



• The algebraic method (Boolean algebra) The 
Karnaugh map method

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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Simplification of Boolean Expression
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Graphical Simplification Methods

The Karnaugh map of a logical function is a graphical 
transformation of the truth table that enables the 
visualization of all minterms.

The Karnaugh Map Method



A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• A minterm is represented by a cell in the Karnaugh map. 
The cells are arranged in such a way that minterms
differing only by the state of a single variable share a 
common border either in a row or a column, or are located 
at the ends of a row or column.

AB

C

00 01 11 10

0 1

1 1 1 1
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The Karnaugh Map Method
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1. Translation of the truth table into a Karnaugh 
map; 

2. Formation of groups of 1, 2, 4, 8 terms 
(powers of 2); 

3. Minimization of groups (maximization of 
terms within a group); If a group has only one 
term, then no action is taken; Elimination of 
variables that change state, and retention of the 
product of variables that have not changed 
state within the group; 

4. The final logical expression is the union of the 
groups after the elimination of variables.

The Karnaugh Map Method



• Formation of groups of 1, 2, 4, 8 terms 
(powers of 2) 

• Minimization of groups  
• Maximization of terms within a group

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

AB 00 01 11 10

0 1

1 1 1 1

C
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The Karnaugh Map Method



A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

AB 00 01 11 10

0 1

C

1 1 1 1

F = AB + BC +AC

• We eliminate the variables that change state and 
retain the product of variables that have not 
changed state within the group.
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The Karnaugh Map Method



Minimal and Non-minimal Grouping
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Incompletely Specified Boolean Functions
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• There are Boolean functions for which there 
are no values associated with certain product 
terms. 

• These terms are never 'selected,' and the 
associated value can be either 0 or 1 
indifferently. 

• They are noted as 'd' (don't care). 
• The 7-segment display is a particular example 

of an incompletely specified Boolean 
function.



The 7-segment display
• We want to display the 10 decimal digits using 7 

segments, labeled from a to g, which can be 
either 0 (off) or 1 (on). The encoding of the 10 
decimal digits requires 4 bits, which can be noted 
as e3 to e0.

e3

e2  

e1

e0

53



e3 e2 e1 e0 a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 0 0 1 1

1 0 1 0 10 d d d d d d d

1 0 1 1 11 d d d d d d d

1 1 0 0 12 d d d d d d d

1 1 0 1 13 d d d d d d d

1 1 1 0 14 d d d d d d d

1 1 1 1 15 d d d d d d d

e3

e2  

e1

e0
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The 7-segment display



Karnaugh Map and (Don't Care)
• When a variable can be either a '1' or a '0,' 

symbolized by a 'd' (don't care), there may be 
more than one minimal grouping.
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End of the 
introduction chapter.
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