
Introduction to Basic
Logic Circuits.

1

2

Subject: Machine Structure 2

Subject Content:

 Chapter 1: Introduction.
 Chapter 2: Combinatorial Logic.
 Chapter 3: Sequential Logic.
 Chapter 4: Integrated Circuits.

 Assessment Method: Exam (60%),
 Continuous assessment (40%).

Introduction

3

• Every computer is designed using integrated
circuits, each with a specialized function:

• (Arithmetic and Logic Unit (ALU),
• Memory,
• Instruction decoding circuit, etc.).
These circuits are made up of logic circuits
whose purpose is to perform operations on
logical variables (binary).

4

Introduction

5

Introduction

6

Introduction

7

Logic circuits are constructed from
Electronic components,
such as transistors.

Types of logic circuits:

Combinatorial
Sequential

Introduction

Combinatorial circuits
Theoretical foundation  Boolean algebra
The output functions are expressed in logical
expressions of only the input variables.

A combinatorial circuit is defined by one or more
logical functions.

Imputs
Combinatorial

circuits

8

Outputs

Sequential Circuits or Memory Circuits
• Theoretical Basis – FSM (Finite State Machine)

• The output functions depend not only on the current
state of input variables but also on the previous state
of certain output variables (memory properties).

Combinatorial Part

Memory

Inputs Outputs

9

Reminder: Boolean Variables

10

• A binary system is a system that can only exist in
two permitted states.

• Various notations can be used to represent these
two states:
 Numeric: 1 and 0
 Logical: true and false
 Electronic: ON and OFF, high and low
 A logical variable is a variable that can take two

states or values: true (T) or false (F).
By associating T with the binary digit 1 and F with
the binary digit 0, this type of variable becomes a
Boolean or binary variable.

Combinatorial Circuits

11

• A combinational circuit is defined when its
number of inputs, number of outputs, and the
state of each output based on the inputs have
been specified.

• This information is provided through a truth
table.

• The truth table of a function with n variables has
2n rows - input states.

• Boolean algebra and logical functions form the
theoretical basis of combinationals circuits.

i0 i1 F0(i0, i1)

0 0

0 1

1 0

1 1

i1 i3 i4 F1(i1, i3 , i4)

0 0 0

0 0 1

0 1 0

0 1 1

. . .

1 1 1

i0 i1 i2 . . . in F0(i0, i1) F1(i1, i3 , i4) . . . Fm(i9, in)

0 0 0 … 0

0 0 0 … 1

. . .

. . .

1 1 1… 1

12

Truth tables

logic Gates

13

• In electronics, the two states of a Boolean variable
are associated with two voltage levels:

• V(0) and V(1) for states 0 and 1, respectively.

• Any logical function can be implemented using a set
of basic logical functions called gates. A circuit is
represented by a logic diagram.

Level Positive Logic Negative Logic
High 1 0
Low 0 1

• At least two inputs.

• The output of an OR function is in state 1 if at
least one of its inputs is in state 1.

A B Y = A + B

0 0 0

0 1 1

1 0 1

1 1 1

14

logic Gate OR

• At least two inputs.

• The output of an AND function is in state 1
if and only if all of its inputs are in state 1.

A B Y = A • B

0 0 0

0 1 0

1 0 0

1 1 1

15

logic Gate AND

• Single input and single output.

• The output of a NOT function is in state 1 if
and only if its input is in state 0.

A Y = A

0 1

1 0

16

logic Gate NOT

17

The "NOT" gate has only one input and one output. It
simply inverts the signal: if the input signal is HIGH, the
output signal is LOW. If the input signal is LOW, then
the output signal is HIGH.

• Is formed by an inverter at the output of
an AND gate.

A B Y = A • B

0 0 1

0 1 1

1 0 1

1 1 0

18

logic Gate NOT AND (NAND)

19

The NAND gate does exactly the opposite of an
AND gate, so its output is low only if all of its inputs
are high.

• A negation at the output of an OR gate
constitutes a NOR function (NOT OR).

A B Y = A + B

0 0 1

0 1 0

1 0 0

1 1 0

20

logic Gate NOT OR (NOR)

21

And here is the transistor-based circuit that allows
obtaining a NOR gate (transistors).

• At least two inputs.

• The output of an XOR function is in state 1 if
the number of its inputs at 1 is an odd number.

A B Y = A B

0 0 0

0 1 1

1 0 1

1 1 0

22

logic Gate Exclusive OR (XOR)

Implementation of Boolean Functions

23

• Any logical function can be implemented using
gates.

• Implementation of a Boolean function: Write
the equation of the function based on its truth
table.

• Simplify the equation. Implement the equation
using available gates.

How to turn a truth table into a
Boolean function

24

From the truth table, we can have two analytical
forms, known as canonical forms:

 Canonical sum of products (Minterm)

 Canonical product of sums (Maxterm)

Canonical expressions
• 3 variables, a product term, which we call a minterm,

equal to the AND of the variables that make up this
combination.

P0 P1 P2 P3 P4 P5 P6 P7

x y z
0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0 0 0 0

3 0 1 1 0 0 0 1 0 0 0 0

4 1 0 0 0 0 0 0 1 0 0 0

5 1 0 1 0 0 0 0 0 1 0 0

6 1 1 0 0 0 0 0 0 0 1 0

7 1 1 1 0 0 0 0 0 0 0 1

25

Example of canonical expressions

A B C F P3 + P5 + P6 + P7

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

F(A, B, C) = P3 + P5 + P6 + P7

This general way of writing a
Boolean function is called the
canonical sum of products.

F (A, B,C)  ABC  ABC  ABC  ABC  (3,5,6,7)

26

Canonical Expressions (POS)

27

• 3 variables, sum term, referred to as
maxterm, equal to the OR of the variables
that make up this combination.

S0 S1 S2 S3 S4 S5 S6 S7

X Y Z

X+Y+Z

_

X+Y+Z
_

X+Y+Z
_ _

X+Y+Z

_

X+Y+Z
_ _

X+Y+Z

_ _

X+Y+Z

_ _ _

X+Y+Z

0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 0 1 1 1 1 1 1

2 0 1 0 1 1 0 1 1 1 1 1

3 0 1 1 1 1 1 0 1 1 1 1

4 1 0 0 1 1 1 1 0 1 1 1

5 1 0 1 1 1 1 1 1 0 1 1

6 1 1 0 1 1 1 1 1 1 0 1

7 1 1 1 1 1 1 1 1 1 1 0

F(X, Y, Z) = S0 · S1 · S2· S4

This expression is
called the canonical
product of sums.

28

Canonical Expressions (POS)

Canonical Expressions

Canonical expressions express a Boolean
function using the logical operators AND, OR,
NOT.

A function can be implemented using the gates
AND, OR, NOT.

29

Canonical Expressions of a
Logical Function

A B C F P3 + P5 + P6 + P7

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

ABC

30

A B C F S0 · S1 · S2 · S4

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A+B+C

31

Canonical Expressions of a
Logical Function

Equivalence Relationship of Circuits

32

• Major Concerns for Designers

• Reduce the number of gates required for system
implementation.

 Minimize the cost in terms of the number of packages.

 Electrical power consumption.

• Minimize complexity.

 Create an equivalent system with certain optimized
parameters.

• Search for equivalence.

 Use the laws and theorems of Boolean algebra.

Summary of Basic Boolean Identities

33

OR (A + B) + C = A + (B + C) = A + B + C

A + B = B + A

A + A = A

A + 0 = A

A + 1 = 1

AND (A • B) • C = A • (B • C) = A • B • C

A • B = B • A

A • A = A

A • 1 = A

A • 0 = 0

Distributivity A • (B + C) = (A • B) + (A • C)

A + (B • C) = (A + B) • (A + C)

NOT A  A

A A 1

A  A 0

Absorption Law, A + (A • B) = A

A • (A + B) = A

De Morgan's Law A  B  C  ...  A  B  C  ...

A  B  C  ...  A  B  C  ...

Exclusive OR A  B  (A  B)  (A  B)

A  B  (A  B)  (B  A)

A  B  (A  B)  (A  B)

A  B  (A  B)  (A  B)

A  B  A  B  A  B

34

Summary of Basic Boolean Identities

Equivalence Relationship of Circuits

• Algebraic Manipulation

35

36

Two logical functions are equivalent:

if and only if,

the values of their outputs are the same for all
identical configurations of their input
variables.

Equivalence Relationship of Circuits

logical Fonctions
• Any Boolean function of any number of variables

can be expressed using the three basic functions
AND, OR, and NOT.

• The set { AND, OR, NOT } is complete.

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

37

• { NOT-AND (NAND) } is complete and minimal.
The gates NOT, OR, and AND can be obtained from
NOT-AND gates.

38

Set { NOT-AND (NAND) }

• { NOT-AND (NAND) } is complete and minimal.
The gates NOT, OR, and AND can be obtained from
NOT-AND gates.

39

Set { NOT-AND (NAND) }

• { NOT-OR (NOR) } is complete and minimal. The
gates NOT, OR, and AND can be obtained from
NOT-OR gates.

40

Set { NOT-OR (NOR) }

Logical Circuit Analysis

41

• Finding its logical function
• Principle
• Provide the expression of the outputs for each

gate/component based on the input values.
• Finally deduce the logical function(s) of the

circuit.
• Next, one can Determine the truth table of the

circuit.
• Simplify the logical function.

Example: 3 inputs, 1 output Composed uniquely of
OR, AND, and NOT logic gates.

• From its logic diagram

f (a,b,c) (ab)(bc)

42

Logical Circuit Analysis

a b c f

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

f (a,b,c) (ab)(bc)

43

Logical Circuit Analysis

44

• From a logical function, find the corresponding
logic diagram for that function

• Principle
• Simplify the logical function using two methods:

• The algebraic method (Boolean algebra)
• The Karnaugh map method
• Deduce the corresponding logic diagram.

Synthesis of a logical circuit

• The algebraic method (Boolean algebra) The
Karnaugh map method

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

45

Simplification of Boolean Expression

46

Graphical Simplification Methods

The Karnaugh map of a logical function is a graphical
transformation of the truth table that enables the
visualization of all minterms.

The Karnaugh Map Method

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• A minterm is represented by a cell in the Karnaugh map.
The cells are arranged in such a way that minterms
differing only by the state of a single variable share a
common border either in a row or a column, or are located
at the ends of a row or column.

AB

C

00 01 11 10

0 1

1 1 1 1

47

The Karnaugh Map Method

48

1. Translation of the truth table into a Karnaugh
map;

2. Formation of groups of 1, 2, 4, 8 terms
(powers of 2);

3. Minimization of groups (maximization of
terms within a group); If a group has only one
term, then no action is taken; Elimination of
variables that change state, and retention of the
product of variables that have not changed
state within the group;

4. The final logical expression is the union of the
groups after the elimination of variables.

The Karnaugh Map Method

• Formation of groups of 1, 2, 4, 8 terms
(powers of 2)

• Minimization of groups
• Maximization of terms within a group

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

AB 00 01 11 10

0 1

1 1 1 1

C

49

The Karnaugh Map Method

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

AB 00 01 11 10

0 1

C

1 1 1 1

F = AB + BC +AC

• We eliminate the variables that change state and
retain the product of variables that have not
changed state within the group.

50

The Karnaugh Map Method

Minimal and Non-minimal Grouping

51

Incompletely Specified Boolean Functions

52

• There are Boolean functions for which there
are no values associated with certain product
terms.

• These terms are never 'selected,' and the
associated value can be either 0 or 1
indifferently.

• They are noted as 'd' (don't care).
• The 7-segment display is a particular example

of an incompletely specified Boolean
function.

The 7-segment display
• We want to display the 10 decimal digits using 7

segments, labeled from a to g, which can be
either 0 (off) or 1 (on). The encoding of the 10
decimal digits requires 4 bits, which can be noted
as e3 to e0.

e3

e2

e1

e0

53

e3 e2 e1 e0 a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 0 0 1 1

1 0 1 0 10 d d d d d d d

1 0 1 1 11 d d d d d d d

1 1 0 0 12 d d d d d d d

1 1 0 1 13 d d d d d d d

1 1 1 0 14 d d d d d d d

1 1 1 1 15 d d d d d d d

e3

e2

e1

e0

54

The 7-segment display

Karnaugh Map and (Don't Care)
• When a variable can be either a '1' or a '0,'

symbolized by a 'd' (don't care), there may be
more than one minimal grouping.

55

End of the
introduction chapter.

56

