Introduction to Basic
Logic Circuits.

Subject: Machine Structure 2

Subject Content:

Chapter 1: Introduction.
Chapter 2: Combinatorial Logic.
Chapter 3: Sequential Logic.
Chapter 4: Integrated Circuits.

» Assessment Method: Exam (60%),
» Continuous assessment (40%).

Introduction

* Every computer is designed using integrated
circuits, each with a specialized function:

* (Arithmetic and Logic Unit (ALU),
 Memory,
* Instruction decoding circuit, etc.).

These circuits are made up of logic circuits
whose purpose 1s to perform operations on
logical variables (binary).

Introduction

REGISTRE D'ETATS

- =l

8 BITS/EX —_— - —

\
REGISTRE TAMPON 7 & BITS/EX
-

E2 -

8 BITS/EX

Introduction

Elementary ALU

A A.B «— Logic unite
: 1
T Olltpllt
T
L ’
R R R S .
Fo A ?__ Adder
F, B 2
: I
Decoder 2x4

: Arithmetic unit
Control unit

Introduction
umanl;l nPDfSVS?I'Emf
ol 2o 0 r:-""':;:.

XOR
J L
w0] o~

R

_ij -

Introduction

Logic circuits are constructed from
Electronic components,
such as transistors.

Types of logic circuits:

Combinatorial
Sequential

Combinatorial circuits

Theoretical foundation - Boolean algebra
The output functions are expressed in logical
expressions of only the input variables.

A combinatorial circuit 1s defined by one or more
logical functions.

Combinatorial
Imputs circuits Outputs

Sequential Circuits or Memory Circuits
* Theoretical Basis — FSM (Finite State Machine)

* The output functions depend not only on the current
state of input variables but also on the previous state
of certain output variables (memory properties).

Inputs

> ﬁ OUtpUtS

Combinatorial Part

Memory

Reminder: Boolean Variables

* A binary system 1s a system that can only exist in
two permitted states.

* Various notations can be used to represent these
two states:
v Numeric: 1 and 0
v" Logical: true and false
v" Electronic: ON and OFF, high and low
v" A logical variable is a variable that can take two
states or values: true (T) or false (F).
By associating T with the binary digit 1 and F with

the binary digit 0, this type of variable becomes a
Boolean or binary variable.

10

Combinatorial Circuits

A combinational circuit 1s defined when its
number of inputs, number of outputs, and the
state of each output based on the inputs have
been specified.

This information 1s provided through a truth
table.

The truth table of a function with n variables has
2" rows - input states.

Boolean algebra and logical functions form the
theoretical basis of combinationals circuits.

11

Truth tables

i| —»

in*

by g g Fi(iy, i3, is)
. io 11 | Folio, i) 000
—> folip 1) 0 o 0 0 1
Combinational [Ji (i1 13 iy) e 010
logic unit : 1 0o 0 1 1
—> fully iy 11 -
1 1 1
oy g in | Folio, i) | Fq(iy, i3, iy) Fm(ig, in)
0O 0 O0.. 0
0 0.. 1
1 1 1 1

12

* In electronics, the two states of a Boolean variable

logic Gates

are associated with two voltage levels:
* V(0) and V(1) for states 0 and 1, respectively.

Level Positive Logic Negative Logic
High 1 0
Low 0 1

* Any logical function can be implemented using a set

of basic logical functions called gates. A circuit 1s

represented by a logic diagram.

13

logic Gate OR

* At least two inputs.

 The output of an OR function 1s 1n state 1 if at
least one of 1its inputs 1s 1n state 1.

Y=A+B

0 N '
1 e
1 B .

1

- = o|l0 >
o =10 W

14

logic Gate AND

* At least two inputs.

e The output of an AND function 1s in state 1
if and only if all of its inputs are 1n state 1.

A B Y=A ¢+ B
0 0 0 A
Kl
0 1 0 B
1 0 0
1 1 1

15

logic Gate NOT

 Single input and single output.

* The output of a NOT function 1s in state 1 1f
and only 1f 1ts 1nput 1s 1n state 0.

>|

o
o | = 1
=

e

16

The "NOT" gate has only one input and one output. It
simply 1nverts the signal: 1f the mput signal 1s HIGH, the
output signal 1s LOW. If the mnput signal 1s LOW, then
the output signal 1s HIGH.

O Output

R1 Q1
Input Q._-J\/\/\,_@>

17

logic Gate NOT AND (NAND)

 Is formed by an inverter at the output of

an AND gate.
A
1 A
e
1
0

- = o|lO0 P
- O = O

18

The NAND gate does exactly the opposite of an
AND gate, so 1ts output 1s low only 1f all of its inputs
are high.

0 Output

Input 00—

Input:2©

19

logic Gate NOT OR (NOR)

* A negation at the output of an OR gate
constitutes a NOR function (NOT OR).

A
b
E

- = 0|0 P

- O =10

ol o =P

20

And here 1s the transistor-based circuit that allows

obtaining a NOR gate (transistors).

Inputio—

’

R1

Inputz20

Q1

R2

+5V

"3

~

—0 Output

21

logic Gate Exclusive OR (XOR)

* At least two inputs.

* The output of an XOR function 1s in state 1 1f
the number of 1ts inputs at 1 1s an odd number.

Y=A®DB

0

- 0|0 P

= O =10

1
1
0

: -I;Ir

22

Implementation of Boolean Functions

* Any logical function can be implemented using
gates.

* Implementation of a Boolean function: Write
the equation of the function based on its truth
table.

« Simplify the equation. Implement the equation
using available gates.

23

How to turn a truth table into a
Boolean function

From the truth table, we can have two analytical
forms, known as canonical forms:

 Canonical sum of products (Minterm)

1 Canonical product of sums (Maxterm)

24

Canonical expressions

* 3 varnables, a product term, which we call a minterm,
equal to the AND of the variables that make up this

combination.
P, P, P, P, P, | P. P, P,
X y 7z Xyz Xy z Xyz xXyz Xyz Xyz XyZ —
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0 0
3 0 1 1 0 0 0 1 0 0 0 0
4 1 0 0 0 0 0 0 1 0 0 0
5 1 0 1 0 0 0 0 0 1 0 0
6 1 1 0 0 0 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 0 0 1

25

Example of canonical expressions

A B C |F|Py+Ps+Ps+ P,
000 |0 0
001 |0 0
010 |0 0
011 |1 1
100 |0 0
1.0 1 |1 1
110 |1 1
111 |1 1

This general way of writing a
Boolean function 1s called the
canonical sum of products.

F(A, B, C) = P+ P+ P, +P,

!

F(A4,B,C)=ABC+ ABC+ ABC + ABC =) (3,5,6,7)

26

e 3 variables, sum term, referred to as
maxterm, equal to the OR of the variables

Canonical Expressions (POS)

that make up this combination.

S, S, S, S, S, S, S, S,
X Y Z _ _ — _ _ —— -
X+Y+Z X+Y+Z X+Y+Z X+Y+Z X+Y+Z X+Y+Z X+Y+Z X+Y+Z
0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 1 1 1
2 0 1 0 1 1 0 1 1 1 1 1
3 0 1 1 1 1 1 0 1 1 1 1
4 1 0 0 1 1 1 1 0 1 1 1
5 1 0 1 1 1 1 1 1 0 1 1
6 1 1 0 1 1 1 1 1 1 0 1
7 1 1 1 1 1 1 1 1 1 1 0

27

Canonical Expressions (POS)

XY Z |F |[Sy-Si-5,-Sy
0 00 |O 0
0 0 1 0 0
010 |0 0
0 1 1 1 1
100 |0 0
1T 0 1 1 1
110 |1 1
1T 1 1 1 1

F(X,Y, Z)=So' SI. Sz' S4

4

F(X.Y, 2)=(X+Y +2)
(XY +Z)(X+Y+Z)(X+Y+Z)

This expression 1s
called the canonical
product of sums.

28

Canonical Expressions

Canonical expressions express a Boolean
function using the logical operators AND, OR,
NOT.

>

A function can be implemented using the gates
AND, OR, NOT.

29

Canonical Expressions of a

Logical Function

ABC
v

A B C |F|P3+Ps+Pg+ P,
0 00 |0 0
0O 01 |0 0
010 |0 0

— |0 1 1 1 1
100 |0 0
10 1 1 1
110 |1 1
111 1 1

N =

AL

Fam
Wl

U

-
=
£5

30

A+B+C

Canonical Expressions of a

Logical Function

v

A B C |F S," S, S, S,
—» |0 0 0 |O 0

0O 01 |0 0

010 |0 0

0 1 1 1 1

100 |0 0

10 1 1 1

110 |1 1

1 1 1 1 1

>A+B+g

: >A+B+C

—Dm

@M

31

Equivalence Relationship of Circuits

Major Concerns for Designers

Reduce the number of gates required for system
implementation.

v Minimize the cost in terms of the number of packages.
v" Electrical power consumption.
Minimize complexity.

v" Create an equivalent system with certain optimized
parameters.

Search for equivalence.

v" Use the laws and theorems of Boolean algebra.

32

Summary of Basic Boolean Identities

OR

(A+B)+C=A+(B+C)=A+B+C
A+B=B+A

A+A=A

A+0=A

A+1=1

AND

(AeB)+sC=As(B*C)=A+B+C
A*B=B-A

A=A
c1=A
.0

0

Distributivity

Q(B+C)=(AOB)+(AOC)

A
A
A
A
A+(B-C)=(A+B)-(A+C)

33

Summary of Basic Boolean Identities

NOT sz
ﬁHA =]
Ae A=0
Absorption Law, |4+ A8 =4
A*(A+B)=A4

De Morgan's Law | 4.B.C...=A+B+C +...

Exclusive OR A@B = (4 + B)e(4deB)
A@ B = (AeB)+ (BeAd)

A@®B = (A eB)+ (A eB)
A@®B = (A + B)e (A+ B)
A@PB = AeB + Ae B

34

Equivalence Relationship of Circuits

* Algebraic Manipulation

4 —

=C*(A@B)+C*(ADB)=A®B®C

35

Equivalence Relationship of Circuits

Two logical functions are equivalent:
if and only 1f,

the values of their outputs are the same for all
identical configurations of their input
variables.

36

logical Fonctions

* Any Boolean function of any number of variables
can be expressed using the three basic functions
AND, OR, and NOT.

* The set { AND, OR, NOT } 1s complete.

ABC |[F| « s ¢

O 0O 0 I | |

001 |0 Y\/\/

010 |0 _

011 |1 P10 | =

100 0 ¢ + ABC

101 |1 4 i L
s’é 1

110 |1 15T

111 |1 | aac

37

Set { NOT-AND (NAND) !

« { NOT-AND (NAND) } 1s complete and minimal.
The gates NOT, OR, and AND can be obtained from
NOT-AND gates.

D 1D~
a —

D

q — ab ab
L

-
i
||

=3

38

Set { NOT-AND (NAND) !

« { NOT-AND (NAND) } 1s complete and minimal.
The gates NOT, OR, and AND can be obtained from
NOT-AND gates.

atbp

=3

D"
b._...._

P
n_.}

39

Set { NOT-OR (NOR) !

 { NOT-OR (NOR) } 1s complete and minimal. The
gates NOT, OR, and AND can be obtained from
NOT-OR gates.

i>:—'r’=ﬂ. B

>

40

Logical Circuit Analysis

Finding 1ts logical function
Principle

Provide the expression of the outputs for each
gate/component based on the input values.

Finally deduce the logical function(s) of the
circuit.

Next, one can Determine the truth table of the
circuit.

Simplify the logical function.

41

Logical Circuit Analysis

Example: 3 mputs, 1 output Composed uniquely of
OR, AND, and NOT logic gates.

a
b

C

* From its logic diagram

flab,0)=(a+b)-(b-c)

}

D

42

Logical Circuit Analysis

flab,0)=(a+b)-(b-c)

a
b

C

@}}

fla,b,c)=(a+b+c)

_ =R =2 OO0 0|0 |0

= =IO O| =~ O |0 |T

= OI=]O|=_1O| 0O |0

—_ | ROl = === = =—n

43

Synthesis of a logical circuit

From a logical function, find the corresponding
logic diagram for that function

Principle

Simplify the logical function using two methods:

T'he algebraic method (Boolean algebra)

I'he Karnaugh map method

* Deduce the corresponding logic diagram.

44

Simplification of Boolean Expression

* The algebraic method (Boolean algebra) The
Karnaugh map method

F(A, B, C) =ABC + ABC + ABC + ABC

=2(3,56,7)

- A A A O O O oOofX>X
- 2 OO0 =~ 2~ O O|w
AOAOAOAOO

45

The Karnaugh Map Method

Graphical Simplification Methods

The Karnaugh map of a logical function 1s a graphical
transformation of the truth table that enables the
visualization of all minterms.

46

The Karnaugh Map Method

* A minterm 1s represented by a cell in the Karnaugh map.
The cells are arranged 1n such a way that minterms
differing only by the state of a single variable share a
common border either in a row or a column, or are located
at the ends of a row or column. F(A, B, C) =ABC + ABC + ABC+ ABC

A B C F =3%(3, 5 6,7)
0 0 0 0

0 0 - X AB[00| 01 | 11 | 10
01 0 0 C

0 1 1 1

10 0 0 0 1
10 1 1

11 0 1 1 1 1 1
11 1 1

47

The Karnaugh Map Method

Translation of the truth table into a Karnaugh
map;

. Formation of groups of 1, 2, 4, 8 terms
(powers of 2);

. Minimization of groups (maximization of
terms within a group); If a group has only one
term, then no action 1s taken; Elimination of
variables that change state, and retention of the
product of variables that have not changed
state within the group;

The final logical expression 1s the union of the
groups after the elimination of variables.

48

The Karnaugh Map Method

Formation of groups of 1, 2, 4, 8 terms

(powers of 2)
Minimization of groups

Maximization of terms within a group

A B C |F
0 0O 0
0 0 1 0
010 0
0 1 1 1
100 0
10 1 1
110 1
111 1

AB|00| 01 | 11 | 10
C

0 1

1 1 || 1

49

The Karnaugh Map Method

We eliminate the variables that change state and

retain the product of variables that have not
changed state within the group.

A B C |F
0 0O 0
0 0 1 0
010 0
0 1 1 1
100 0
10 1 1
110 1
111 1

AB|00| 01 | 11 | 10
C

0 1

1 1 || 1
F=AB +BC +AC

50

Minimal and Non-minimal Grouping

AB
00 01 11 10
cD 1
00 (1)
4
01 1 (1 1)
N
11 2(1 1) "T“
10 1
A_
F=ABC+ ACD |
ABC + AC

AB
CD

2
00 F\

oI

Q)
1aivD
A

10

51

Incompletely Specified Boolean Functions

* There are Boolean functions for which there
are no values associated with certain product
terms.

 These terms are never 'selected,' and the
associated value can be either O or 1
indifferently:.

* They are noted as 'd' (don't care).

 The 7-segment display 1s a particular example
of an incompletely specified Boolean
function.

52

The 7-segment display

We want to display the 10 decimal digits using 7
segments, labeled from a to g, which can be
either O (off) or 1 (on). The encoding of the 10
decimal digits requires 4 bits, which can be noted
as €3 to co.

€3 I
e, 8 PR X | T e O
— | . | J S N S | N

53

The 7-segment display

O O] O «~| «~| «~| «— T| ©| ©| ©| T ©
w| | ol ol o] | - ©| o| ©o| ©o| ©| T
o| | ol —| ol ofl © o| o| ©o| ©o| ©| T
ol ~| ol =| «| o] - o| o| ©o| ©o| ©| T
ol «| «| ol «| «| « ©| o| ©o| ©o| ©| T
ol «| «| | «| «| o ©| o| ©o| ©o| ©| T
ol «| ol «| «| o] « o| o| o| ©o| ©| T

ol w|N|leo<|w SIS S 232
o ~| o ~| o]~ ol ~| o ~| ol -
ol oo | | oo ~| ~| ol o «~| ~
U o| ol o o] ~| ~ ol o] «| «| «| «
S| ©o| ol ol 0| 0| © | «| | «| «| «

54

Karnaugh Map and (Don't Care)

When a variable can be eithera'l'ora'0,’
symbolized by a 'd' (don't care), there may be
more than one minimal grouping.

AB AB
00 01 11 10 00 01 11 10

cD CD
00| 1) (d 00 L]J d

JNaDNENGD
T

10| d 10 Fq

F=BCD+ BD F=ABD+ BD

95

End of the
introduction chapter.

56

