Introduction to Basic Logic Circuits.

1

Subject: Machine Structure 2

Subject Content:

- Chapter 1: Introduction.
- Chapter 2: Combinatorial Logic.
- Chapter 3: Sequential Logic.
- Chapter 4: Integrated Circuits.
- > Assessment Method: Exam (60%),
- Continuous assessment (40%).

- Every computer is designed using <u>integrated</u> <u>circuits</u>, each with a specialized function:
- (Arithmetic and Logic Unit (ALU),
- Memory,
- Instruction decoding circuit, etc.).

These circuits are made up of <u>logic circuits</u> whose purpose is to perform operations on logical variables (binary).

Logic circuits are constructed from Electronic components, such as transistors.

Types of logic circuits:

Combinatorial Sequential

Combinatorial circuits

Theoretical foundation \rightarrow Boolean algebra The output functions are expressed in logical expressions of only the input variables.

A combinatorial circuit is defined by one or more logical functions.

Sequential Circuits or Memory Circuits

- Theoretical Basis FSM (Finite State Machine)
- The output functions depend not only on the current state of input variables but also on the previous state of certain output variables (memory properties).

Reminder: Boolean Variables

- A <u>binary system</u> is a system that can only exist in two permitted states.
- Various notations can be used to represent these two states:
 - ✓ Numeric: 1 and 0
 - ✓ Logical: true and false
 - \checkmark Electronic: ON and OFF, high and low
 - ✓ A logical variable is a variable that can take two states or values: true (T) or false (F).

By associating T with the binary digit 1 and F with the binary digit 0, this type of variable becomes a **Boolean or binary** variable.

Combinatorial Circuits

- A combinational circuit is defined when its number of inputs, number of outputs, and the state of each output based on the inputs have been specified.
- This information is provided through a truth table.
- The truth table of a function with \underline{n} variables has $\underline{2^n}$ rows input states.
- Boolean algebra and logical functions form the theoretical basis of combinationals circuits.

Truth tables

i ₁	i ₃	i ₄	$F_1(i_1, i_3, i_4)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	1	1	

	i _o i ₁ i	2•••	i _n	F ₀ (i ₀ , i ₁)	$F_1(i_1, i_3, i_4)$	 F _m (i ₉ , i _n)
	0 0	0	0			
	0 0	0	1			
>						
	1 1	1	1			

logic Gates

- In electronics, the two states of a Boolean variable are associated with two voltage levels:
- V(0) and V(1) for states 0 and 1, respectively.

Level	Positive Logic	Negative Logic
High	1	0
Low	0	1

• Any logical function can be implemented using a set of basic logical functions called gates. A circuit is represented by a logic diagram.

logic Gate OR

- At least two inputs.
- The output of an OR function is in state 1 if at least one of its inputs is in state 1.

A	В	Y = A + B	
0	0	0	
0	1	1)
1	0	1	
1	1	1	

logic Gate AND

- At least two inputs.
- The output of an AND function is in state 1 if and only if all of its inputs are in state 1.

logic Gate NOT

- Single input and single output.
- The output of a NOT function is in state 1 if and only if its input is in state 0.

The "NOT" gate has only one input and one output. It simply inverts the signal: if the input signal is HIGH, the output signal is LOW. If the input signal is LOW, then the output signal is HIGH.

logic Gate NOT AND (NAND)

• Is formed by an inverter at the output of an AND gate.

Α	В	$Y = \overline{A \cdot B}$	
0	0	1	A
0	1	1	вУ
1	0	1	
1	1	0	

The NAND gate does exactly the opposite of an AND gate, so its output is low only if all of its inputs are high.

logic Gate NOT OR (NOR)

• A negation at the output of an OR gate constitutes a NOR function (NOT OR).

Α	В	$Y = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

And here is the transistor-based circuit that allows obtaining a NOR gate (transistors).

logic Gate Exclusive OR (XOR)

- At least two inputs.
- The output of an XOR function is in state 1 if the number of its inputs at 1 is an odd number.

Α	В	Y = A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

Implementation of Boolean Functions

- Any logical function can be implemented using <u>gates.</u>
- Implementation of a Boolean function: Write the equation of the function based on its truth table.
- Simplify the equation. Implement the equation using available gates.

How to turn a truth table into a Boolean function

From the truth table, we can have two analytical forms, known as canonical forms:

Canonical sum of products (Minterm)

Canonical product of sums (Maxterm)

Canonical expressions

• 3 variables, a product term, which we call a minterm, equal to the AND of the variables that make up this combination.

				Po	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
	X	У	Z	x y z	x y z	хуz	xyz	x y z	x y z	xyz	xyz
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

Example of canonical expressions

Α	В	С	F	$P_3 + P_5 + P_6 + P_7$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

This general way of writing a Boolean function is called the canonical sum of products.

$$F(A, B, C) = P_3 + P_5 + P_6 + P_7$$

 $F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + AB\overline{C} + ABC = \sum (3, 5, 6, 7)$

Canonical Expressions (POS)

• 3 variables, sum term, referred to as maxterm, equal to the OR of the variables that make up this combination.

				S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
	X	Y	Z	X+Y+Z	_ X+Y+Z	X+¥+Z	X+Y+Z	– X+Y+Z	 X+Y+Z	 X+Y+Z	 X+Y+Z
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

Canonical Expressions (POS)

X	Y	Ζ	F	$S_0 \cdot S_1 \cdot S_2 \cdot S_4$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

 $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \mathbf{S}_0 \cdot \mathbf{S}_1 \cdot \mathbf{S}_2 \cdot \mathbf{S}_4$

 $F(X, Y, Z) = (\overline{X} + Y + Z)$ $(X + \overline{Y} + Z)(X + Y + \overline{Z})(X + Y + Z)$

This expression is called the canonical product of sums.

Canonical Expressions

Canonical expressions express a Boolean function using the logical operators AND, OR, NOT.

A function can be implemented using the gates AND, OR, NOT.

Canonical Expressions of a Logical Function

Canonical Expressions of a Logical Function

Equivalence Relationship of Circuits

- Major Concerns for Designers
- Reduce the number of gates required for system implementation.
 - \checkmark Minimize the cost in terms of the number of packages.
 - ✓ Electrical power consumption.
- Minimize complexity.
 - ✓ Create an equivalent system with certain optimized parameters.
- Search for equivalence.
 - \checkmark Use the laws and theorems of Boolean algebra.

Summary of Basic Boolean Identities

OR	(A + B) + C = A + (B + C) = A + B + C A + B = B + A A + A = A A + 0 = A A + 1 = 1
AND	$(A \cdot B) \cdot C = A \cdot (B \cdot C) = A \cdot B \cdot C$ $A \cdot B = B \cdot A$ $A \cdot A = A$ $A \cdot 1 = A$ $A \cdot 0 = 0$
Distributivity	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $A + (B \cdot C) = (A + B) \cdot (A + C)$

Summary of Basic Boolean Identities

NOT	$ \overline{\underline{A}} = A $
	A + A = 1
	$\overline{A} \bullet A = 0$
Absorption Law,	$A + (A \bullet B) = A$
	$A \bullet (A + B) = A$
De Morgan's Law	$\overline{A \bullet B \bullet C \bullet \ldots} = \overline{A + B + C + \ldots}$
	$\overline{A+B+C+\ldots} = \overline{A} \bullet \overline{B} \bullet \overline{C} \bullet \ldots$
Exclusive OR	$A \mathcal{D} B = (A + B) \bullet (\overline{A \bullet B})$
	$A \mathcal{D} B = (A \bullet B) + (B \bullet \overline{A})$
	$A \mathcal{D} B = (\overline{A \bullet B}) + (\overline{A \bullet B})$
	$A \mathcal{D} B = (A + B) \bullet (\overline{A} + \overline{B})$
	$A \mathcal{D} B = \overline{A} \bullet B + A \bullet \overline{B}$

Equivalence Relationship of Circuits

• Algebraic Manipulation

$$F(A, B, C) = \overline{A \bullet B \bullet C} + \overline{A \bullet B \bullet C} + \overline{A \bullet B \bullet C} + \overline{A \bullet B \bullet C} =$$
$$= C \bullet (\overline{A \bullet B} + A \bullet B) + \overline{C} \bullet (\overline{A \bullet B} + \overline{A \bullet B})$$
$$= C \bullet (\overline{A \oplus B}) + \overline{C} \bullet (A \oplus B) = A \oplus B \oplus C$$

Equivalence Relationship of Circuits Two logical functions are equivalent:

if and only if,

the values of their outputs are the same for all identical configurations of their input variables.
logical Fonctions

- Any Boolean function of any number of variables can be expressed using the three basic functions AND, OR, and NOT.
- The set { AND, OR, NOT } is complete.

Set { NOT-AND (NAND) }

 { NOT-AND (NAND) } is complete and minimal. The gates NOT, OR, and AND can be obtained from NOT-AND gates.

Set { NOT-AND (NAND) }

 { NOT-AND (NAND) } is complete and minimal. The gates NOT, OR, and AND can be obtained from NOT-AND gates.

Set { NOT-OR (NOR) }

• { NOT-OR (NOR) } is complete and minimal. The gates NOT, OR, and AND can be obtained from NOT-OR gates.

Logical Circuit Analysis

- Finding its logical function
- Principle
- Provide the expression of the outputs for each gate/component based on the input values.
- Finally deduce the logical function(s) of the circuit.
- Next, one can Determine the truth table of the circuit.
- Simplify the logical function.

Logical Circuit Analysis

Example: 3 inputs, 1 output Composed uniquely of OR, AND, and NOT logic gates.

• From its logic diagram

$$f(a,b,c) = (a+b) \cdot (\bar{b} \cdot c)$$

Logical Circuit Analysis

Synthesis of a logical circuit

- From a logical function, find the corresponding logic diagram for that function
- Principle
- Simplify the logical function using two methods:
 - The algebraic method (Boolean algebra)
 - The Karnaugh map method
 - Deduce the corresponding logic diagram.

Simplification of Boolean Expression

• The algebraic method (Boolean algebra) The Karnaugh map method

 $F(A, B, C) = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$ $= \sum (3, 5, 6, 7)$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Graphical Simplification Methods

The Karnaugh map of a logical function is a graphical transformation of the truth table that enables the visualization of all minterms.

 A minterm is represented by a cell in the Karnaugh map. The cells are arranged in such a way that minterms differing only by the state of a single variable share a common border either in a row or a column, or are located at the ends of a row or column.
F(A, B, C) = ABC + ABC + ABC + ABC

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

= <u>∑</u> (3, 5, 6, 7)								
AB	00	01	11	10				

1

2	4	7

- 1. Translation of the truth table into a Karnaugh map;
- 2. Formation of groups of 1, 2, 4, 8 terms (powers of 2);
- 3. Minimization of groups (maximization of terms within a group); If a group has only one term, then no action is taken; Elimination of variables that change state, and retention of the product of variables that have not changed state within the group;
- 4. The final logical expression is the union of the groups after the elimination of variables.

- Formation of groups of 1, 2, 4, 8 terms (powers of 2)
- Minimization of groups
- Maximization of terms within a group

• We eliminate the variables that change state and retain the product of variables that have not changed state within the group.

F = AB + BC + AC

Minimal and Non-minimal Grouping

Incompletely Specified Boolean Functions

- There are Boolean functions for which there are no values associated with certain product terms.
- These terms are never 'selected,' and the associated value can be either 0 or 1 indifferently.
- They are noted as 'd' (don't care).
- The 7-segment display is a particular example of an incompletely specified Boolean function.

The 7-segment display

We want to display the 10 decimal digits using 7 segments, labeled from <u>a</u> to <u>g</u>, which can be either 0 (off) or 1 (on). The encoding of the 10 decimal digits requires 4 bits, which can be noted as e₃ to e₀.

The 7-segment display

e3	e2	e1	e0		а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	1	0	1	1	0	0	0	0
0	0	1	0	2	1	1	0	1	1	0	1
0	0	1	1	3	1	1	1	1	0	0	1
0	1	0	0	4	0	1	1	0	0	1	1
0	1	0	1	5	1	0	1	1	0	1	1
0	1	1	0	6	1	0	1	1	1	1	1
0	1	1	1	7	1	1	1	0	0	0	0
1	0	0	0	8	1	1	1	1	1	1	1
1	0	0	1	9	1	1	1	0	0	1	1
1	0	1	0	10	d	d	d	d	d	d	d
1	0	1	1	11	d	d	d	d	d	d	d
1	1	0	0	12	d	d	d	d	d	d	d
1	1	0	1	13	d	d	d	d	d	d	d
1	1	1	0	14	d	d	d	d	d	d	d
1	1	1	1	15	d	d	d	d	d	d	d

Karnaugh Map and (Don't Care)

• When a variable can be either a '1' or a '0,' symbolized by a 'd' (don't care), there may be more than one minimal grouping.

End of the introduction chapter.