المحاضرة 3: حساب الاحتمالات

- * بعض المفاهيم الخاصة بالاحتمال.
 - * قوانين الاحتمالات.
 - الاحتمال الشرطي.
 - *نظرية بايز.

1) بعض المفاهيم

يمكن تحديد • النتائج الممكنة

لا يمكن تحديد • النتيجة التي سوف نظهر

التجربة العشوائية

النتائج الممكنة

رمي قطعة نقد

 $\{F,P\}$

فراغ العينة

هو مجموعة كل النتائج المكنة للتجربة العشوائية، يرمز:

 $Card(\Omega)$

مثال: عند رمي قطعة نقد فإن النتائج الممكنة هي: (F) طهور الكتابة (P). إذ النتائج الممكنة هي: $\{F,P\}$

الحدث

هو فئة جزئية أو مجموعة جزئية من النتائج المكونة لفراغ العينة، ويرمز له بـ

C, **B**, **A**

يمكن أن يكون الحدث بسيط كما يمكن أن يكون مركب.

نرمي زهرة نردمرة واحدة، نعرف الحادث A بأنه ظهور عدد يقبل القسمة على 3. الحادث B بأنه ظهور عدد فردي. الحادث C يقبل القسمة على 3 وأكبر من 5. الحادث C يقبل القسمة على 3 وأكبر من 5.

الحادث ٨

$$P(A) = \frac{Card(A)}{Card(\Omega)}$$

$0 \le P(A) \le 1$

قاعدة الضرب قاعدة

هنا نطبق قاعدة أو؛ OU

أ) جمع الاحتمالات:

هنا نجد حالتين؛ الحوادث متنافية وغير متنافية

غير متنافية

 $A \cap B \neq \emptyset$

متنافية

$$A \cap B = \emptyset$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

مثال: نرمي زهرة نرد مرة واحدة. نعرف الحوادث التالية:

$$\Omega = \{1, 2, 3, 4, 5, 6\}, card(\Omega) = 6$$

$$P(A) = \frac{3}{6}$$
 $A = \{1,3,5\}, card(A) = 3$ $B = \{3,6\}, card(B) = 2$ $B = \{3,6\}, card(B) = 2$ $B = \{6\}, card(C) = 1$ $C = \{6\}, card(C)$

 $P(A \cup B), P(A \cup C)$

$$P(A \cup B) = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6}$$

$$P(A \cup C) = \frac{3}{6} + \frac{1}{6} = \frac{4}{6}$$

$$A \cap C = \emptyset$$

$$P(A \cup C)$$

أ) ضرب الاحتمالات: هنا نطبق قاعدة و ؛ ET

هنا نجد حالتين؛ الحوادث المستقلة وغير المستقلة

غير مستقلة

 $P(A \cap B) = P(A) \times P(B / A)$

مستقلة

 $P(A \cap B) = P(A) \times P(B)$

يعني وقوع الحادث B شرط تحقق (أو وقوع) الحادث A أولا ويسمى بالحادث الشرطي.

نظريات مهمة

$$P(\varnothing)=0$$
 : ان احتمال حدوث الحادثة الخالية \varnothing يساوي O 0، أي أن O 2 الحادثة الخالية O 3 الحادثة الخالية O 4 الحدوث ا

$$\Rightarrow P(S) + P(\emptyset) = P(S) \Rightarrow P(\emptyset) = P(S) - P(S) = 0$$

 \checkmark احتمال حدوث الحادثة \land مضاف إليه احتمال مكملتها \overline{A} يساوي 1.

$$P(A) + P(\overline{A}) = 1$$

$$A \cup \overline{A} = S \Rightarrow P(A \cup \overline{A}) = P(S) \Rightarrow P(A) + P(\overline{A}) = 1$$

احتمال حدوث مكملة A أو مكملة B؛ أي $(\overline{A} \cup \overline{B})$ ، يساوي احتمال مكملة A وB. أي؛

 $P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1 - P(A \cap B)$*

• احتمال حدوث مكملة A و مكملة B؛ أي $(\overline{A} \cap \overline{B})$ ، يساوي احتمال مكملة A أو B.

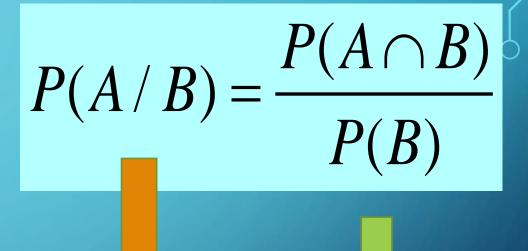
¹ $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) \dots *$

ر إذا كان A و عدم حدوث B مطروحا منه احتمال حدوث A و عدم حدوث B و عدم حدوث B مطروحا منه احتمال حدوث B و B و عدم حدوث B و عدم

علاحظة هامة: في حالة وجود ثلاث حوادث $P(A \cap B) \neq 0$ وكان $P(A) \neq 0$ وكان $P(A \cap B) \neq 0$ فإن: $P(A \cap B \cap C) = P(A) \cdot P(B \mid A) \cdot P(C \mid A \cap B)$

3. الاحتمال الشرطي

إدا كان A و B حدثان وكان $0 \neq 0$ فإن الاحتمال الشرطي للحادث A فإن الاحتمال الشرطي للحادث B بشرط وقوع B يحسب كما يلي:

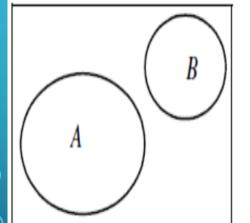


 $P(B) \neq 0$

 $^{"}$ B (أو معلومية) $^{"}$

حالات خاصة:

:Venn كما يكون $(A \cap B) = \emptyset$ كما يوضحه مخطط

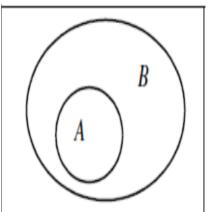


$$(A \cap B) = \emptyset$$

$$P(A \cap B) = P(\emptyset) = 0$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0$$

• إذا كان الحادث A مثلا محتواة في الحادث B كما يبين مخطط Venn:



$$P(A \cap B) = P(A)$$
 فإن $P(A \cap B) = P(A \cap B)$ فإن $P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$

$$P(A / B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)}$$

مثال: نرمي قطعتي نرد مرة واحدة، نسمي الحادث $\bf A$ مجموع الوجهين $\bf B$ الطاهريين هو $\bf B$. الحادث $\bf B$ إحدى الوجهين الطاهريين هو $\bf C$

S1	1	2	3	4	5	6
\$2	1	2	3	4	5	6

المجموع يساوي 6	A
ظهور العدد 2	В

الحالات الكلية لرمي زهرة نرد مرتين متتاليتين

	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	(2,4)	2 ,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	(4,2)	4 ,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6.6

رمي زهرتين نرد، إذن الحالات الكلية تساوي 36.

$$Card(\Omega) = n^p = 6^2 = 36$$

$$A = \{(2.4), (4.2), (1.5), (5.1), (3.3) \} \rightarrow n(A) = 5$$

$$B = \{(1.2), (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (3.2), (4.2), (5.2), (6.2) \} \rightarrow n(B) = 11$$

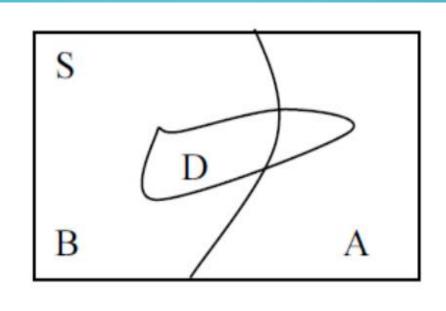
$$P(A) = \frac{5}{36}, \dots P(B) = \frac{11}{36}$$

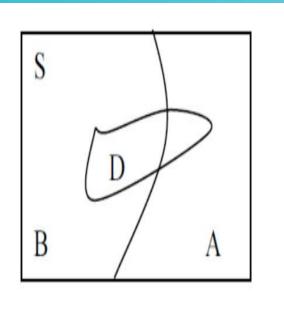
$$A \cap B = \{(2.4), (4.2) \} \rightarrow n(A \cap B) = 2$$

$$P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{2/36}{5/36} = \frac{2}{5}$$

4. نظرية بايز Théoréme de Bayes

راذا كان A وكان الحادث D أي A وكان الحادث B أي حادث في نفس الفراغ، حيث $P(D) \neq 0$





$$P(D) = ?$$
 D أولا، نقوم بحساب إحتمال

$$S = A \cup B \dots \longrightarrow /S = A + B \dots \dots 1$$

$$D \cap S = D \dots 2 \rightarrow$$

$$D = D \cap (A \cup B)$$

$$D = (D \cap A) + (D \cap B)$$

$$P(D) = P(D \cap A) + P(D \cap B)$$

$$P(D) = P(D/A).P(A) + P(D/B).P(B)$$

$$P(A/D)$$
, $P(B/D)$

 $\operatorname{P}(\mathrm{A}/D)$ وثانيا: الآن نقوم بحساب كل $\operatorname{P}(\mathrm{B}/D)$

$$P(A/D) = \frac{P(D \cap A)}{P(D)} = \frac{P(D/A).P(A)}{P(D/A).P(A) + P(D/B).P(B)}$$

$$P(B/D) = \frac{P(D \cap B)}{P(D)} = \frac{P(D/B).P(B)}{P(D/A).P(A) + P(D/B).P(B)}$$

نظرية بايز

مصنع انتاجي يحتوي على ثلاث آلات (M_3, M_2, M_1) تنتج ما نسبته 35%، 40% و 25% على الترتيب من الإنتاج الكلي للمصنع علما بأن نسبة الإنتاج التالف من انتاج الآلات هو 6%، 3% و8% على الترتيب. سحبت وحدة انتاج من المصنع عشوائيا فكانت تالفة. المطلوب:

✓ احسب احتمال أن تكون الوحدة المسحوبة تالفة؟

√احسب احتمال أن تكون من انتاج الآلة (M1)؟

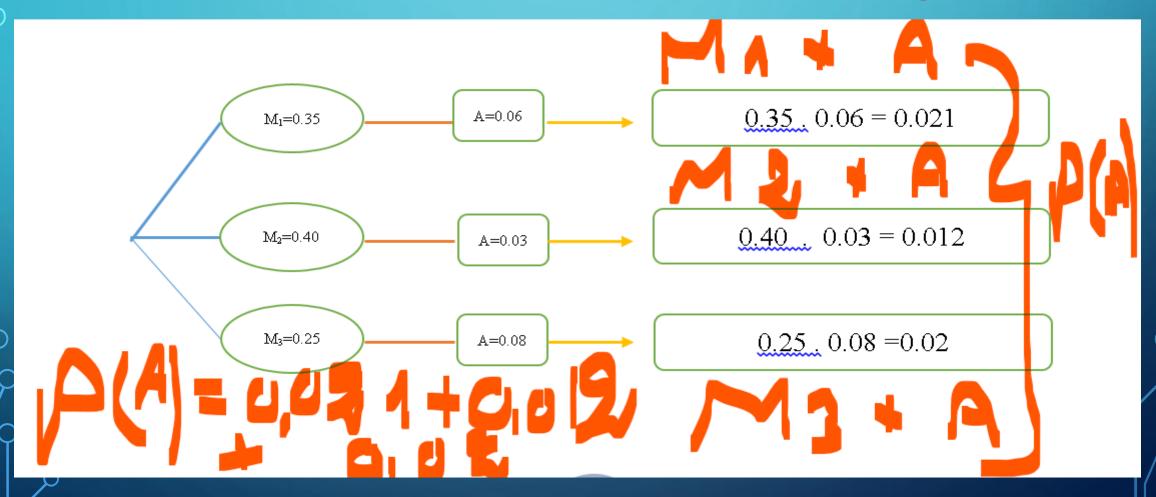
(M2) احسب احتمال أن تكون من انتاج الآلة (M2)?

و / احسب احتمال أن تكون من انتاج الآلة (M3)؟

لدينا انتاج الآلات كما يلى:

P(M2)=0.40,P(M3) = 0.25P(M1) = 0.35,

سحبنا وحدة انتاج فكانت تالفة (A)؛ أي P(A) محققة.



نحسب الآن احتمال أن الوحدة تالفة؛ أي P(A): يكون تالف إما من M_1 أو من M_2 أو من M_3

$$P(A) = P(M_1).P(A/M_1) + P(M_2).P(A/M_2) + P(M_3).P(A/M_3)$$

$$P(A) = (0.35 \times 0.06) + (0.40 \times 0.03) + (0.25 \times 0.08)$$

$$P(A) = 0.021 + 0.012 + 0.02 = 0.053$$

احتمال أن تكون الوحدة التالفة من \mathbf{M}_1 . رياضيا نعبر عن هذا الاحتمال بما يلي $\mathbf{P}(\mathbf{M}_1/\mathbf{A})$

$$P(M_1/A) = \frac{P(M_1 \cap A)}{P(A)} = \frac{P(M_1).P(A/M_1)}{P(A)}$$
$$P(M_1/A) = \frac{0.35 \times 0.06}{0.053} \approx 0.40$$

 $\mathbf{P}(\mathbf{M}_2/\mathbf{A})$. رياضيا نعبر عن هذا الاحتمال بما يلي: \mathbf{M}_2 . رياضيا نعبر عن هذا الاحتمال بما يلي

$$P(M_2/A) = \frac{P(M_2 \cap A)}{P(A)} = \frac{P(M_2).P(A/M_2)}{P(A)}$$
$$P(M_2/A) = \frac{0.4 \times 0.03}{0.053} \approx 0.22$$

 $P(M_3/A)$: كتمال أن تكون الوحدة التالفة من M_3 . رياضيا نعبر عن هذا الاحتمال بما يلي

$$P(M_3 / A) = \frac{P(M_3 \cap A)}{P(A)} = \frac{P(M_3).P(A / M_3)}{P(A)}$$
$$P(M_3 / A) = \frac{0.25 \times 0.08}{0.053} \approx 0.38$$

نلاحظ أن مجموع الاحتمالات يساوي 1؛ أي:

$$P(M_1/A) + P(M_2/A) + P(M_3/A) = 0.40 + 0.22 + 0.38 = 1$$